Lösung 4.4:6c
Aus Online Mathematik Brückenkurs 1
K (Lösning 4.4:6c moved to Solution 4.4:6c: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | If we use the trigonometric relation |
- | < | + | <math>\text{sin }\left( -x \right)=-\text{sin }x</math>, the equation can be rewritten as |
- | {{ | + | |
+ | |||
+ | <math>\sin 2x=\sin \left( -x \right)</math> | ||
+ | |||
+ | |||
+ | In exercise 4.4:5a, we saw that an equality of the type | ||
+ | |||
+ | |||
+ | <math>\sin u=\sin v\quad </math> | ||
+ | |||
+ | |||
+ | is satisfied if | ||
+ | |||
+ | |||
+ | <math>u=v+2n\pi </math> | ||
+ | or | ||
+ | <math>u=\pi -v+2n\pi </math> | ||
+ | |||
+ | |||
+ | where | ||
+ | <math>n\text{ }</math> | ||
+ | is an arbitrary integer. The consequence of this is that the solutions to the equation satisfy | ||
+ | |||
+ | |||
+ | <math>2x=-x+2n\pi </math> | ||
+ | or | ||
+ | <math>2x=\pi -\left( -x \right)+2n\pi </math> | ||
+ | |||
+ | |||
+ | i.e. | ||
+ | |||
+ | |||
+ | <math>3x=2n\pi </math> | ||
+ | or | ||
+ | <math>x=\pi +2n\pi </math> | ||
+ | |||
+ | |||
+ | The solutions to the equation are thus | ||
+ | |||
+ | |||
+ | <math>\left\{ \begin{array}{*{35}l} | ||
+ | x=\frac{2n\pi }{3} \\ | ||
+ | x=\pi +2n\pi \\ | ||
+ | \end{array} \right.</math> | ||
+ | ( | ||
+ | <math>n\text{ }</math> | ||
+ | an arbitrary integer) |
Version vom 11:54, 1. Okt. 2008
If we use the trigonometric relation \displaystyle \text{sin }\left( -x \right)=-\text{sin }x, the equation can be rewritten as
\displaystyle \sin 2x=\sin \left( -x \right)
In exercise 4.4:5a, we saw that an equality of the type
\displaystyle \sin u=\sin v\quad
is satisfied if
\displaystyle u=v+2n\pi
or
\displaystyle u=\pi -v+2n\pi
where
\displaystyle n\text{ }
is an arbitrary integer. The consequence of this is that the solutions to the equation satisfy
\displaystyle 2x=-x+2n\pi
or
\displaystyle 2x=\pi -\left( -x \right)+2n\pi
i.e.
\displaystyle 3x=2n\pi
or
\displaystyle x=\pi +2n\pi
The solutions to the equation are thus
\displaystyle \left\{ \begin{array}{*{35}l}
x=\frac{2n\pi }{3} \\
x=\pi +2n\pi \\
\end{array} \right.
(
\displaystyle n\text{ }
an arbitrary integer)