Lösung 4.4:5c
Aus Online Mathematik Brückenkurs 1
K (Lösning 4.4:5c moved to Solution 4.4:5c: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | + | For a fixed value of | |
- | < | + | <math>u</math>, an equality of the form |
- | + | ||
- | + | ||
- | < | + | <math>\cos u=\cos v</math> |
- | + | ||
+ | |||
+ | is satisfied by two angles | ||
+ | <math>v</math> | ||
+ | in the unit circle: | ||
+ | |||
+ | |||
+ | <math>v=u</math> | ||
+ | and | ||
+ | <math>v=-u</math> | ||
[[Image:4_4_5_c.gif|center]] | [[Image:4_4_5_c.gif|center]] | ||
+ | |||
+ | This means that all angles | ||
+ | <math>v</math> | ||
+ | which satisfy the equality are | ||
+ | |||
+ | |||
+ | <math>v=u+2n\pi </math> | ||
+ | and | ||
+ | <math>v=-u+2n\pi </math> | ||
+ | |||
+ | |||
+ | where | ||
+ | <math>n\text{ }</math> | ||
+ | is an arbitrary integer. | ||
+ | |||
+ | Therefore, the equation | ||
+ | |||
+ | |||
+ | <math>\cos 5x=\cos \left( x+{\pi }/{5}\; \right)</math> | ||
+ | |||
+ | |||
+ | has the solutions | ||
+ | |||
+ | |||
+ | <math>5x=x+\frac{\pi }{5}+2n\pi </math> | ||
+ | or | ||
+ | |||
+ | <math>5x=-x-\frac{\pi }{5}+2n\pi </math> | ||
+ | |||
+ | If we collect | ||
+ | <math>x\text{ }</math> | ||
+ | onto one side, we end up with | ||
+ | |||
+ | |||
+ | <math>\left\{ \begin{array}{*{35}l} | ||
+ | x=\frac{\pi }{20}+\frac{1}{2}n\pi \\ | ||
+ | x=-\frac{\pi }{30}+\frac{1}{3}n\pi \\ | ||
+ | \end{array} \right.</math> | ||
+ | ( | ||
+ | <math>n\text{ }</math> | ||
+ | an arbitrary integer). |
Version vom 11:18, 1. Okt. 2008
For a fixed value of \displaystyle u, an equality of the form
\displaystyle \cos u=\cos v
is satisfied by two angles
\displaystyle v
in the unit circle:
\displaystyle v=u
and
\displaystyle v=-u
This means that all angles \displaystyle v which satisfy the equality are
\displaystyle v=u+2n\pi
and
\displaystyle v=-u+2n\pi
where
\displaystyle n\text{ }
is an arbitrary integer.
Therefore, the equation
\displaystyle \cos 5x=\cos \left( x+{\pi }/{5}\; \right)
has the solutions
\displaystyle 5x=x+\frac{\pi }{5}+2n\pi
or
\displaystyle 5x=-x-\frac{\pi }{5}+2n\pi
If we collect \displaystyle x\text{ } onto one side, we end up with
\displaystyle \left\{ \begin{array}{*{35}l}
x=\frac{\pi }{20}+\frac{1}{2}n\pi \\
x=-\frac{\pi }{30}+\frac{1}{3}n\pi \\
\end{array} \right.
(
\displaystyle n\text{ }
an arbitrary integer).