Lösung 4.4:3b
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (Lösning 4.4:3b moved to Solution 4.4:3b: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | We see directly that |
- | < | + | <math>x=\frac{\pi }{5}</math> |
- | { | + | is a solution to the equation, and using the unit circle we can also draw the conclusion that |
+ | <math>x=\pi -\frac{\pi }{5}=\frac{4\pi }{5}</math> | ||
+ | is the only other solution between | ||
+ | <math>0</math> | ||
+ | and | ||
+ | <math>\text{2}\pi </math>. | ||
+ | |||
[[Image:4_4_3_b.gif|center]] | [[Image:4_4_3_b.gif|center]] | ||
+ | |||
+ | We obtain all solutions to the equation when we add integer multiples of | ||
+ | <math>\text{2}\pi </math>, | ||
+ | |||
+ | |||
+ | <math>x=\frac{\pi }{5}+2n\pi </math> | ||
+ | and | ||
+ | <math>x=\frac{4\pi }{5}+2n\pi </math> | ||
+ | |||
+ | |||
+ | where | ||
+ | <math>n</math> | ||
+ | is an arbitrary integer. |
Version vom 09:43, 1. Okt. 2008
We see directly that \displaystyle x=\frac{\pi }{5} is a solution to the equation, and using the unit circle we can also draw the conclusion that \displaystyle x=\pi -\frac{\pi }{5}=\frac{4\pi }{5} is the only other solution between \displaystyle 0 and \displaystyle \text{2}\pi .
We obtain all solutions to the equation when we add integer multiples of \displaystyle \text{2}\pi ,
\displaystyle x=\frac{\pi }{5}+2n\pi
and
\displaystyle x=\frac{4\pi }{5}+2n\pi
where
\displaystyle n
is an arbitrary integer.