Lösung 4.4:2f
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (Lösning 4.4:2f moved to Solution 4.4:2f: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | Using the unit circle shows that the equation |
- | < | + | <math>\text{cos 3}x=-\frac{1}{\sqrt{2}}</math> |
- | {{ | + | has two solutions for |
+ | <math>0\le \text{3}x\le \text{2}\pi </math>, | ||
+ | |||
+ | |||
+ | <math>3x=\frac{\pi }{2}+\frac{\pi }{4}=\frac{3\pi }{4}</math> | ||
+ | and | ||
+ | <math>3x=\pi +\frac{\pi }{4}=\frac{5\pi }{4}</math> | ||
[[Image:4_4_2_f.gif|center]] | [[Image:4_4_2_f.gif|center]] | ||
+ | |||
+ | We obtain the other solutions by adding multiples of | ||
+ | <math>2\pi </math>, | ||
+ | |||
+ | |||
+ | <math>3x=\frac{3\pi }{4}+2n\pi </math> | ||
+ | and | ||
+ | <math>3x=\frac{5\pi }{4}+2n\pi </math> | ||
+ | |||
+ | |||
+ | i.e. | ||
+ | |||
+ | |||
+ | <math>x=\frac{\pi }{4}+\frac{2}{3}n\pi </math> | ||
+ | and | ||
+ | <math>x=\frac{5\pi }{12}+\frac{2}{3}n\pi </math> | ||
+ | |||
+ | |||
+ | where | ||
+ | <math>n</math> | ||
+ | is an arbitrary integer. |
Version vom 08:57, 1. Okt. 2008
Using the unit circle shows that the equation \displaystyle \text{cos 3}x=-\frac{1}{\sqrt{2}} has two solutions for \displaystyle 0\le \text{3}x\le \text{2}\pi ,
\displaystyle 3x=\frac{\pi }{2}+\frac{\pi }{4}=\frac{3\pi }{4}
and
\displaystyle 3x=\pi +\frac{\pi }{4}=\frac{5\pi }{4}
We obtain the other solutions by adding multiples of \displaystyle 2\pi ,
\displaystyle 3x=\frac{3\pi }{4}+2n\pi
and
\displaystyle 3x=\frac{5\pi }{4}+2n\pi
i.e.
\displaystyle x=\frac{\pi }{4}+\frac{2}{3}n\pi
and
\displaystyle x=\frac{5\pi }{12}+\frac{2}{3}n\pi
where
\displaystyle n
is an arbitrary integer.