Lösung 4.3:9

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 4.3:9 moved to Solution 4.3:9: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
Using the formula for double angles on sin
-
<center> [[Image:4_3_9-1(2).gif]] </center>
+
<math>160^{\circ }</math>
-
{{NAVCONTENT_STOP}}
+
gives
-
{{NAVCONTENT_START}}
+
 
-
<center> [[Image:4_3_9-2(2).gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
<math>\sin 160^{\circ }=2\cos 80^{\circ }\sin 80^{\circ }</math>
 +
 
 +
 
 +
On the right-hand side, we see that the factor
 +
<math>\cos 80^{\circ }</math>
 +
has appeared, and if we use the formula for double angles on the second factor (
 +
<math>\sin 80^{\circ }</math>
 +
),
 +
 
 +
 
 +
<math>2\cos 80^{\circ }\sin 80^{\circ }=2\cos 80^{\circ }\centerdot 2\cos 40^{\circ }\sin 40^{\circ }</math>
 +
 
 +
 
 +
we obtain a further factor
 +
<math>\cos 40^{\circ }</math>. A final application of the formula for double angles on
 +
<math>\sin 40^{\circ }</math>
 +
gives us all three cosine factors:
 +
 
 +
 
 +
<math>2\cos 80^{\circ }\centerdot 2\cos 40^{\circ }\centerdot \sin 40^{\circ }=2\cos 80^{\circ }\centerdot 2\cos 40^{\circ }\centerdot 2\cos 20^{\circ }\sin 20^{\circ }</math>
 +
 
 +
 
 +
We have thus succeeded in showing that
 +
 
 +
 
 +
<math>\sin 160^{\circ }=8\cos 80^{\circ }\centerdot \cos 40^{\circ }\centerdot \cos 20^{\circ }\sin 20^{\circ }</math>
 +
 
 +
 
 +
which can also be written as
 +
 
 +
 
 +
<math>\cos 80^{\circ }\centerdot \cos 40^{\circ }\centerdot \cos 20^{\circ }=\frac{\sin 160^{\circ }}{8\sin 20^{\circ }}</math>
 +
 
 +
 
 +
If we draw the unit circle, we see that
 +
<math>160^{\circ }</math>
 +
makes an angle of
 +
<math>20^{\circ }</math>
 +
with the negative
 +
<math>x</math>
 +
-axis, and therefore the angles
 +
<math>20^{\circ }</math>
 +
and
 +
<math>160^{\circ }</math>
 +
have the same
 +
<math>y</math>
 +
-coordinate in the unit circle, i.e.
 +
 
 +
<math>\sin 20^{\circ }=\sin 160^{\circ }</math>.
 +
 
[[Image:4_3_9.gif|center]]
[[Image:4_3_9.gif|center]]
 +
 +
This shows that
 +
 +
 +
<math>\cos 80^{\circ }\centerdot \cos 40^{\circ }\centerdot \cos 20^{\circ }=\frac{\sin 160^{\circ }}{8\sin 20^{\circ }}=\frac{1}{8}</math>

Version vom 11:31, 30. Sep. 2008

Using the formula for double angles on sin \displaystyle 160^{\circ } gives


\displaystyle \sin 160^{\circ }=2\cos 80^{\circ }\sin 80^{\circ }


On the right-hand side, we see that the factor \displaystyle \cos 80^{\circ } has appeared, and if we use the formula for double angles on the second factor ( \displaystyle \sin 80^{\circ } ),


\displaystyle 2\cos 80^{\circ }\sin 80^{\circ }=2\cos 80^{\circ }\centerdot 2\cos 40^{\circ }\sin 40^{\circ }


we obtain a further factor \displaystyle \cos 40^{\circ }. A final application of the formula for double angles on \displaystyle \sin 40^{\circ } gives us all three cosine factors:


\displaystyle 2\cos 80^{\circ }\centerdot 2\cos 40^{\circ }\centerdot \sin 40^{\circ }=2\cos 80^{\circ }\centerdot 2\cos 40^{\circ }\centerdot 2\cos 20^{\circ }\sin 20^{\circ }


We have thus succeeded in showing that


\displaystyle \sin 160^{\circ }=8\cos 80^{\circ }\centerdot \cos 40^{\circ }\centerdot \cos 20^{\circ }\sin 20^{\circ }


which can also be written as


\displaystyle \cos 80^{\circ }\centerdot \cos 40^{\circ }\centerdot \cos 20^{\circ }=\frac{\sin 160^{\circ }}{8\sin 20^{\circ }}


If we draw the unit circle, we see that \displaystyle 160^{\circ } makes an angle of \displaystyle 20^{\circ } with the negative \displaystyle x -axis, and therefore the angles \displaystyle 20^{\circ } and \displaystyle 160^{\circ } have the same \displaystyle y -coordinate in the unit circle, i.e.

\displaystyle \sin 20^{\circ }=\sin 160^{\circ }.


This shows that


\displaystyle \cos 80^{\circ }\centerdot \cos 40^{\circ }\centerdot \cos 20^{\circ }=\frac{\sin 160^{\circ }}{8\sin 20^{\circ }}=\frac{1}{8}