Lösung 3.1:5c

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
-
The trick is to use the conjugate rule
+
The trick is to use the formula for the difference of two squares
-
<math>\left( a-b \right)(a+b)=a^{\text{2}}-b^{\text{2}}</math>
+
<math>(a-b)(a+b) = a^{2}-b^{2}</math> and multiply the top and bottom of the fraction by <math>3-\sqrt{7}</math> (note the minus sign), since then the new denominator will be <math>(3+\sqrt{7})(3-\sqrt{7}) = 3^{2} - (\sqrt{7})^{2} = 9-7 = 2</math> (the formula with <math>a=3</math> and <math>b=\sqrt{7}\,</math>), i.e. the root sign is squared away.
-
and multiply the top and bottom of the fraction by
+
-
<math>3-\sqrt{7}</math>
+
-
(note the minus sign), since then the new denominator will be
+
-
<math>\left( 3+\sqrt{7} \right)\left( 3-\sqrt{7} \right)=3^{2}-\left( \sqrt{7} \right)^{2}=9-7=2</math>
+
-
(conjugate rule with
+
-
<math>a=\text{3 }</math>
+
-
and
+
-
<math>b=\sqrt{\text{7}}</math>
+
-
), i.e. the root sign is squared away.
+
The whole calculation is
The whole calculation is
-
 
+
{{Displayed math||<math>\begin{align}
-
<math>\begin{align}
+
\frac{2}{3+\sqrt{7}}
-
& \frac{2}{3+\sqrt{7}}=\frac{2}{3+\sqrt{7}}\centerdot \frac{3-\sqrt{7}}{3-\sqrt{7}}=\frac{2\left( 3-\sqrt{7} \right)}{3^{2}-\left( \sqrt{7} \right)^{2}} \\
+
&= \frac{2}{3+\sqrt{7}}\cdot\frac{3-\sqrt{7}}{3-\sqrt{7}}
-
& =\frac{2\centerdot 3-2\sqrt{7}}{2}=3-\sqrt{7} \\
+
= \frac{2(3-\sqrt{7}\,)}{3^{2}-(\sqrt{7}\,)^{2}}\\[5pt]
-
\end{align}</math>
+
&= \frac{2\cdot 3-2\sqrt{7}}{2} = 3-\sqrt{7}\,\textrm{.}
 +
\end{align}</math>}}

Version vom 11:29, 30. Sep. 2008

The trick is to use the formula for the difference of two squares \displaystyle (a-b)(a+b) = a^{2}-b^{2} and multiply the top and bottom of the fraction by \displaystyle 3-\sqrt{7} (note the minus sign), since then the new denominator will be \displaystyle (3+\sqrt{7})(3-\sqrt{7}) = 3^{2} - (\sqrt{7})^{2} = 9-7 = 2 (the formula with \displaystyle a=3 and \displaystyle b=\sqrt{7}\,), i.e. the root sign is squared away.

The whole calculation is

Vorlage:Displayed math