Lösung 3.1:5a
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K |
|||
Zeile 1: | Zeile 1: | ||
- | If we multiply the top and bottom of the fraction by | + | If we multiply the top and bottom of the fraction by <math>\sqrt{12}</math>, the new denominator will be <math>\sqrt{12}\cdot\sqrt{12} = 12</math> and we will get rid of the root sign in the denominator |
- | <math>\sqrt{12}</math>, the new denominator will be | + | |
- | <math>\sqrt{12}\ | + | |
- | and we will get rid of the root sign in the denominator | + | |
+ | {{Displayed math||<math>\frac{2}{\sqrt{12}} = \frac{2}{\sqrt{12}}\cdot \frac{\sqrt{12}}{\sqrt{12}} = \frac{2\sqrt{12}}{12} = \frac{2\sqrt{12}}{2\cdot 6} = \frac{\sqrt{12}}{6}\,\textrm{.}</math>}} | ||
- | <math> | + | This expression can be simplified even further if we write <math>12 = 2\cdot 6 = 2\cdot 2\cdot 3 = 2^2\cdot 3</math> and take <math>2^2</math> out from under the root, we get |
- | + | {{Displayed math||<math>\frac{\sqrt{12}}{6} = \frac{2\sqrt{3}}{6} = \frac{2\sqrt{3}}{2\cdot 3} = \frac{\sqrt{3}}{3}\,\textrm{.}</math>}} | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | <math>\frac{\sqrt{12}}{6}=\frac{2\sqrt{3}}{6}=\frac{2\sqrt{3}}{2\ | + |
Version vom 11:18, 30. Sep. 2008
If we multiply the top and bottom of the fraction by \displaystyle \sqrt{12}, the new denominator will be \displaystyle \sqrt{12}\cdot\sqrt{12} = 12 and we will get rid of the root sign in the denominator
This expression can be simplified even further if we write \displaystyle 12 = 2\cdot 6 = 2\cdot 2\cdot 3 = 2^2\cdot 3 and take \displaystyle 2^2 out from under the root, we get