Lösung 3.1:3d

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
-
We can multiply
+
We can multiply <math>\sqrt{\tfrac{2}{3}}</math> into the bracket and then write the root expressions together under a common root sign using the rule <math>\sqrt{a\vphantom{b}}\cdot \sqrt{b} = \sqrt{ab}</math>,
-
<math>\sqrt{\frac{2}{3}}</math>
+
-
into the bracket and then write the root expressions together under a common root sign using the rule
+
-
<math>\sqrt{a}\centerdot \sqrt{b}=\sqrt{ab}</math>
+
 +
{{Displayed math||<math>\sqrt{\frac{2}{3}}\bigl(\sqrt{6}-\sqrt{3}\bigr) = \sqrt{\frac{2}{3}}\cdot\sqrt{6} - \sqrt{\frac{2}{3}}\cdot\sqrt{3} = \sqrt{\frac{2\cdot 6}{3}} - \sqrt{\frac{2\cdot 3}{3}}\,\textrm{.}</math>}}
 +
Because <math>(2\cdot 6)/3 = 2\cdot 2 = 2^2</math> and <math>(2\cdot 3)/3 = 2</math>, we obtain
-
<math>\sqrt{\frac{2}{3}}\left( \sqrt{6}-\sqrt{3} \right)=\sqrt{\frac{2}{3}}\centerdot \sqrt{6}-\sqrt{\frac{2}{3}}\centerdot \sqrt{3}=\sqrt{\frac{2\centerdot 6}{3}}-\sqrt{\frac{2\centerdot 3}{3}}.</math>
+
{{Displayed math||<math>\sqrt{\frac{2}{3}}\bigl(\sqrt{6} - \sqrt{3}\bigr) = \sqrt{2^2}-\sqrt{2} = 2-\sqrt{2}\,\textrm{.}</math>}}
-
 
+
-
Because
+
-
<math>\frac{2\centerdot 6}{3}=2\centerdot 2=2^{2}</math>
+
-
and
+
-
<math>\frac{2\centerdot 3}{3}=2</math>, we obtain
+
-
 
+
-
 
+
-
<math>\sqrt{\frac{2}{3}}\left( \sqrt{6}-\sqrt{3} \right)=\sqrt{2^{2}}-\sqrt{2}=2-\sqrt{2}</math>
+

Version vom 10:40, 30. Sep. 2008

We can multiply \displaystyle \sqrt{\tfrac{2}{3}} into the bracket and then write the root expressions together under a common root sign using the rule \displaystyle \sqrt{a\vphantom{b}}\cdot \sqrt{b} = \sqrt{ab},

Vorlage:Displayed math

Because \displaystyle (2\cdot 6)/3 = 2\cdot 2 = 2^2 and \displaystyle (2\cdot 3)/3 = 2, we obtain

Vorlage:Displayed math