Lösung 4.3:8a

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 4.3:8a moved to Solution 4.3:8a: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
-
<center> [[Image:4_3_8a.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
We rewrite
 +
<math>\text{tan }v</math>
 +
on the left-hand side as
 +
<math>\frac{\sin v}{\cos v}</math>, so that
 +
 
 +
 
 +
<math>\tan ^{2}v=\frac{\sin ^{2}v}{\cos ^{2}v}</math>
 +
 
 +
 
 +
If we then use the Pythagorean identity
 +
 
 +
 
 +
<math>\cos ^{2}v+\sin ^{2}v=1</math>
 +
 
 +
 
 +
and rewrite
 +
<math>\text{cos}^{\text{2}}v</math>
 +
in the denominator as
 +
<math>\text{1}-\text{sin}^{\text{2}}v\text{ }</math>, we get what we are looking for on the right-hand side. The whole calculation is
 +
 
 +
 
 +
<math>\tan ^{2}v=\frac{\sin ^{2}v}{\cos ^{2}v}=\frac{\sin ^{2}v}{1-\sin ^{2}v}</math>

Version vom 10:37, 30. Sep. 2008


We rewrite \displaystyle \text{tan }v on the left-hand side as \displaystyle \frac{\sin v}{\cos v}, so that


\displaystyle \tan ^{2}v=\frac{\sin ^{2}v}{\cos ^{2}v}


If we then use the Pythagorean identity


\displaystyle \cos ^{2}v+\sin ^{2}v=1


and rewrite \displaystyle \text{cos}^{\text{2}}v in the denominator as \displaystyle \text{1}-\text{sin}^{\text{2}}v\text{ }, we get what we are looking for on the right-hand side. The whole calculation is


\displaystyle \tan ^{2}v=\frac{\sin ^{2}v}{\cos ^{2}v}=\frac{\sin ^{2}v}{1-\sin ^{2}v}