Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

Lösung 4.3:6c

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 4.3:6c moved to Solution 4.3:6c: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
Because the angle
-
<center> [[Image:4_3_6c-1(2).gif]] </center>
+
<math>v</math>
-
{{NAVCONTENT_STOP}}
+
satisfies
-
{{NAVCONTENT_START}}
+
<math>\pi \le v\le \frac{3\pi }{2}</math>,
-
<center> [[Image:4_3_6c-2(2).gif]] </center>
+
<math>v</math>
-
{{NAVCONTENT_STOP}}
+
belongs to the third quadrant in the unit circle. Furthermore,
 +
<math>\text{tan }v=\text{3 }</math>
 +
gives that the line which corresponds to the angle
 +
<math>v</math>
 +
 
 +
<math>v</math>
 +
has a gradient of
 +
<math>\text{3}</math>.
 +
 
[[Image:4_3_6_c1.gif|center]]
[[Image:4_3_6_c1.gif|center]]
 +
 +
slope 3
 +
 +
 +
In the third quadrant, we can introduce a right-angled triangle in which the hypotenuse is
 +
<math>\text{1}</math>
 +
and the sides have a
 +
<math>\text{3}:\text{1 }</math>
 +
ratio.
 +
[[Image:4_3_6_c2.gif|center]]
[[Image:4_3_6_c2.gif|center]]
 +
 +
If we now use Pythagoras' theorem on the triangle, we see that the horizontal side
 +
<math>\text{a}</math>
 +
satisfies
 +
 +
 +
<math>a^{2}+\left( 3a \right)^{2}=1^{2}</math>
 +
 +
 +
which gives us that
 +
 +
 +
<math>10a^{2}=1</math>
 +
i.e.
 +
<math>a=\frac{1}{\sqrt{10}}</math>
 +
 +
 +
Thus, the angle
 +
<math>v</math>'s
 +
<math>x</math>
 +
-coordinate is
 +
<math>-\frac{1}{\sqrt{10}}</math>
 +
and
 +
<math>y</math>
 +
-coordinate is
 +
<math>-\frac{3}{\sqrt{10}}</math>, i.e.
 +
 +
<math>\cos v=--\frac{1}{\sqrt{10}}</math>
 +
 +
 +
<math>\sin v=-\frac{3}{\sqrt{10}}</math>

Version vom 09:38, 30. Sep. 2008

Because the angle v satisfies v23, v belongs to the third quadrant in the unit circle. Furthermore, tan v=3 gives that the line which corresponds to the angle v

v has a gradient of 3.


slope 3


In the third quadrant, we can introduce a right-angled triangle in which the hypotenuse is 1 and the sides have a 3:1 ratio.

If we now use Pythagoras' theorem on the triangle, we see that the horizontal side a satisfies


a2+3a2=12 


which gives us that


10a2=1 i.e. a=110


Thus, the angle v's x -coordinate is 110 and y -coordinate is 310, i.e.

cosv=110


sinv=310