Lösung 3.1:2e
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K |
|||
Zeile 1: | Zeile 1: | ||
- | Looking first at | + | Looking first at <math>\sqrt{18}</math> this square root expression can be simplified by writing 18 as a product of its smallest possible integer factors |
- | <math>\sqrt{18}</math> | + | |
- | this square root expression can be simplified by writing | + | |
- | + | ||
- | as a product of its smallest possible integer factors | + | |
- | + | ||
- | + | ||
- | + | ||
+ | {{Displayed math||<math>18 = 2\cdot 9 = 2\cdot 3\cdot 3 = 2\cdot 3^{2}</math>}} | ||
and then we can take the quadratic out of the square root sign by using the rule | and then we can take the quadratic out of the square root sign by using the rule | ||
- | <math>\sqrt{a^{2}b}=a\sqrt{b}</math>, | + | <math>\sqrt{a^{2}b}=a\sqrt{b}</math> (valid for non-negative ''a'' and ''b''), |
+ | {{Displayed math||<math>\sqrt{18} = \sqrt{2\cdot 3^{2}} = 3\sqrt{2}\,\textrm{.}</math>}} | ||
- | + | In the same way, we write <math>8 = 2\cdot 4 = 2\cdot 2\cdot 2 = 2^{3}</math> and get | |
- | + | ||
- | In the same way, we write | + | |
- | <math>8=2\ | + | |
- | and get | + | |
- | + | ||
- | + | ||
- | + | ||
+ | {{Displayed math||<math>\sqrt{8} = \sqrt{2\cdot 2^{2}} = 2\sqrt{2}\,\textrm{.}</math>}} | ||
All together, we get | All together, we get | ||
- | + | {{Displayed math||<math>\begin{align} | |
- | <math>\begin{align} | + | \sqrt{18}\sqrt{8} |
- | + | &= 3\sqrt{2}\cdot 2\sqrt{2}\\[5pt] | |
- | & =3\ | + | &= 3\cdot 2\cdot \bigl(\sqrt{2}\bigr)^{2}\\[5pt] |
- | & | + | &= 3\cdot 2\cdot 2\\[5pt] |
- | \end{align}</math> | + | &= 12\,\textrm{.} |
+ | \end{align}</math>}} |
Version vom 08:07, 30. Sep. 2008
Looking first at \displaystyle \sqrt{18} this square root expression can be simplified by writing 18 as a product of its smallest possible integer factors
and then we can take the quadratic out of the square root sign by using the rule \displaystyle \sqrt{a^{2}b}=a\sqrt{b} (valid for non-negative a and b),
In the same way, we write \displaystyle 8 = 2\cdot 4 = 2\cdot 2\cdot 2 = 2^{3} and get
All together, we get