Lösung 2.3:6c

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
If we complete the square of the expression, we have that
If we complete the square of the expression, we have that
 +
{{Displayed math||<math>\begin{align}
 +
x^{2} - 5x + 7 &= \Bigl(x-\frac{5}{2}\Bigr)^{2} - \Bigl(\frac{5}{2}\Bigr)^{2} + 7\\[5pt]
 +
&= \Bigl(x-\frac{5}{2}\Bigr)^{2} - \frac{25}{4} + \frac{28}{4}\\[5pt]
 +
&= \Bigl(x-\frac{5}{2}\Bigr)^{2} + \frac{3}{4}
 +
\end{align}</math>}}
-
<math>\begin{align}
+
and because <math>\bigl(x-\tfrac{5}{2}\bigr)^{2}</math> is a quadratic, this term assumes a minimal value zero when <math>x=5/2\,</math>. This shows that the polynomial's smallest value is <math>\tfrac{3}{4}</math>.
-
& x^{2}-5x+7=\left( x-\frac{5}{2} \right)^{2}-\left( \frac{5}{2} \right)^{2}+7 \\
+
-
& =\left( x-\frac{5}{2} \right)^{2}-\frac{25}{4}+\frac{28}{4}=\left( x-\frac{5}{2} \right)^{2}+\frac{3}{4} \\
+
-
\end{align}</math>
+
-
 
+
-
 
+
-
and because
+
-
<math>\left( x-\frac{5}{2} \right)^{2}</math>
+
-
is a quadratic, this term is at least equal to zero when
+
-
<math>x={5}/{2}\;</math>. This shows that the polynomial's smallest value is
+
-
<math>\frac{3}{4}</math>.
+

Version vom 11:45, 29. Sep. 2008

If we complete the square of the expression, we have that

Vorlage:Displayed math

and because \displaystyle \bigl(x-\tfrac{5}{2}\bigr)^{2} is a quadratic, this term assumes a minimal value zero when \displaystyle x=5/2\,. This shows that the polynomial's smallest value is \displaystyle \tfrac{3}{4}.