Lösung 4.3:3f

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 4.3:3f moved to Solution 4.3:3f: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
In this case, it is perhaps simplest to use the addition formula for sine,
-
<center> [[Image:4_3_3f.gif]] </center>
+
-
{{NAVCONTENT_STOP}}
+
 
 +
<math>\sin \left( \frac{\pi }{3}+v \right)=\sin \frac{\pi }{3}\centerdot \cos v+\cos \frac{\pi }{3}\centerdot \sin v.</math>
 +
 
 +
Since
 +
<math>\sin \frac{\pi }{3}=\frac{\sqrt{3}}{2},\ \ \cos \frac{\pi }{3}=\frac{1}{2},\ \ \sin v=a</math>, and
 +
<math>\cos v=\sqrt{1-a^{2}}</math>
 +
this can be written as
 +
 
 +
 
 +
<math>\sin \left( \frac{\pi }{3}+v \right)=\frac{\sqrt{3}}{2}\sqrt{1-a^{2}}+\frac{1}{2}a.</math>

Version vom 11:34, 29. Sep. 2008

In this case, it is perhaps simplest to use the addition formula for sine,


\displaystyle \sin \left( \frac{\pi }{3}+v \right)=\sin \frac{\pi }{3}\centerdot \cos v+\cos \frac{\pi }{3}\centerdot \sin v.

Since \displaystyle \sin \frac{\pi }{3}=\frac{\sqrt{3}}{2},\ \ \cos \frac{\pi }{3}=\frac{1}{2},\ \ \sin v=a, and \displaystyle \cos v=\sqrt{1-a^{2}} this can be written as


\displaystyle \sin \left( \frac{\pi }{3}+v \right)=\frac{\sqrt{3}}{2}\sqrt{1-a^{2}}+\frac{1}{2}a.