Lösung 2.3:6a

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
-
Using the squaring rule, we recognize the polynomial as the expansion of
+
Using the rule <math>(a+b)^2=a^2+2ab+b^2</math>, we recognize the polynomial as the expansion of <math>(x-1)^{2}\,</math>,
-
<math>\left( x-1 \right)^{2}</math>,
+
 +
{{Displayed math||<math>x^{2}-2x+1 = (x-1)^{2}\,\textrm{.}</math>}}
-
<math>x^{2}-2x+1=\left( x-1 \right)^{2}</math>
+
This quadratic expression has its smallest value, zero, when <math>x-1=0</math>, i.e.
 +
<math>x=1</math>. All non-zero values of <math>x-1</math> give a positive value for
 +
<math>(x-1)^{2}</math>.
-
This quadratic expression has its smallest value, zero, when
+
Note: If we draw the curve <math>y=(x-1)^{2}</math>, we see that it has a minimum value of zero at <math>x=1\,</math>.
-
<math>x-\text{1}=0</math>, i.e.
+
-
<math>x=\text{1}</math>. All non-zero values of
+
-
<math>x-\text{1}</math>
+
-
give a positive value for
+
-
<math>\left( x-1 \right)^{2}</math>.
+
-
 
+
-
NOTE: If we draw the curve
+
-
<math>y=\left( x-1 \right)^{2}</math>, we see that it has a minimum value of zero at
+
-
<math>x=\text{1}</math>.
+
[[Image:2_3_6_a.gif|center]]
[[Image:2_3_6_a.gif|center]]

Version vom 11:29, 29. Sep. 2008

Using the rule \displaystyle (a+b)^2=a^2+2ab+b^2, we recognize the polynomial as the expansion of \displaystyle (x-1)^{2}\,,

Vorlage:Displayed math

This quadratic expression has its smallest value, zero, when \displaystyle x-1=0, i.e. \displaystyle x=1. All non-zero values of \displaystyle x-1 give a positive value for \displaystyle (x-1)^{2}.


Note: If we draw the curve \displaystyle y=(x-1)^{2}, we see that it has a minimum value of zero at \displaystyle x=1\,.