Lösung 4.3:1b

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
Zeile 12: Zeile 12:
-
FIGURE1 FIGURE2
+
<center> [[Image:4_3_1_b.gif]] </center>
-
the line
+
 
 +
the line
<math>{y=\sin \pi }/{7}\;</math>
<math>{y=\sin \pi }/{7}\;</math>
-
the line
+
the line
<math>{y=\sin \pi }/{7}\;</math>
<math>{y=\sin \pi }/{7}\;</math>

Version vom 10:14, 29. Sep. 2008

Because the sine value for an angle is equal to the angle's \displaystyle y -coordinate on a unit circle, two angles have the same sine value only if they have the same \displaystyle y-coordinate. Therefore, if we draw in the angle \displaystyle {\pi }/{7}\; on a unit circle, we see that the only angle between \displaystyle {\pi }/{2}\; and \displaystyle \pi which has the same sine value lies in the second quadrant, where the line \displaystyle {y=\sin \pi }/{7}\; cuts the unit circle.


Image:4_3_1_b.gif

the line \displaystyle {y=\sin \pi }/{7}\; the line \displaystyle {y=\sin \pi }/{7}\;


Because of symmetry, we have that this angle is the reflection of the angle \displaystyle {\pi }/{7}\; in the \displaystyle y-axis, i.e.

\displaystyle v=\pi -{\pi }/{7}\;={6\pi }/{7}\;.