Lösung 4.2:7
Aus Online Mathematik Brückenkurs 1
K (Lösning 4.2:7 moved to Solution 4.2:7: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | + | If extend the line | |
- | < | + | <math>\text{AB}</math> |
- | { | + | to a point |
- | { | + | <math>\text{D}</math> |
- | < | + | opposite |
- | {{ | + | <math>\text{C}</math>, we will get the right-angled triangle shown below, where the distance |
+ | <math>x</math> | ||
+ | between | ||
+ | <math>\text{C}</math> | ||
+ | and | ||
+ | <math>\text{D}</math> | ||
+ | is the desired distance. | ||
[[Image:4_2_7_1.gif|center]] | [[Image:4_2_7_1.gif|center]] | ||
+ | |||
+ | The information in the exercise can be summarized by considering the two triangles | ||
+ | <math>\text{ACD}</math> | ||
+ | and | ||
+ | <math>\text{BCD}</math>, and setting up relations for the tangents that the angles | ||
+ | <math>\text{3}0^{\circ }</math> | ||
+ | and | ||
+ | <math>\text{45}^{\circ }</math> | ||
+ | gives rise to, | ||
+ | |||
+ | |||
[[Image:4_2_7_2.gif|center]] | [[Image:4_2_7_2.gif|center]] | ||
+ | |||
+ | <math>x=\left( 100+y \right)\tan 30^{\circ }=\left( 100+y \right)\frac{1}{\sqrt{3}}</math> <math>x=y\centerdot \tan 45^{\circ }=y\centerdot 1</math> | ||
+ | |||
+ | |||
+ | |||
+ | where | ||
+ | <math>y</math> | ||
+ | is the distance between B and D. | ||
+ | |||
+ | The second relation above gives that | ||
+ | <math>y=x</math> | ||
+ | and substituting this into the first relation gives | ||
+ | |||
+ | |||
+ | <math>x=\left( 100+x \right)\frac{1}{\sqrt{3}}</math> | ||
+ | |||
+ | |||
+ | Multiplying both sides by | ||
+ | <math>\sqrt{3}</math> | ||
+ | gives | ||
+ | |||
+ | |||
+ | <math>\sqrt{3}x=100+x</math> | ||
+ | |||
+ | |||
+ | moving all the x-terms to the left-hand side gives | ||
+ | |||
+ | |||
+ | <math>\left( \sqrt{3}-1 \right)x=100</math> | ||
+ | |||
+ | |||
+ | The answer is | ||
+ | |||
+ | |||
+ | <math>x=\frac{100}{\sqrt{3}-1}\ \text{m}\quad \approx \quad \text{136}\text{.6}\ \text{m}</math> |
Version vom 08:55, 29. Sep. 2008
If extend the line \displaystyle \text{AB} to a point \displaystyle \text{D} opposite \displaystyle \text{C}, we will get the right-angled triangle shown below, where the distance \displaystyle x between \displaystyle \text{C} and \displaystyle \text{D} is the desired distance.
The information in the exercise can be summarized by considering the two triangles \displaystyle \text{ACD} and \displaystyle \text{BCD}, and setting up relations for the tangents that the angles \displaystyle \text{3}0^{\circ } and \displaystyle \text{45}^{\circ } gives rise to,
\displaystyle x=\left( 100+y \right)\tan 30^{\circ }=\left( 100+y \right)\frac{1}{\sqrt{3}} \displaystyle x=y\centerdot \tan 45^{\circ }=y\centerdot 1
where \displaystyle y is the distance between B and D.
The second relation above gives that \displaystyle y=x and substituting this into the first relation gives
\displaystyle x=\left( 100+x \right)\frac{1}{\sqrt{3}}
Multiplying both sides by
\displaystyle \sqrt{3}
gives
\displaystyle \sqrt{3}x=100+x
moving all the x-terms to the left-hand side gives
\displaystyle \left( \sqrt{3}-1 \right)x=100
The answer is
\displaystyle x=\frac{100}{\sqrt{3}-1}\ \text{m}\quad \approx \quad \text{136}\text{.6}\ \text{m}