Lösung 4.2:5b

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 4.2:5b moved to Solution 4.2:5b: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
If we draw the angle
-
<center> [[Image:4_2_5b.gif]] </center>
+
<math>\text{225}^{\circ }\text{ }=\text{ 18}0^{\circ }\text{ }+\text{ 45}^{\circ }</math>
-
{{NAVCONTENT_STOP}}
+
on a unit circle, we see that it makes an angle of
 +
<math>\text{45}^{\circ }</math>
 +
with the negative
 +
<math>x</math>
 +
-axis.
 +
 
[[Image:4_2_5_b1.gif|center]]
[[Image:4_2_5_b1.gif|center]]
 +
 +
This means that
 +
<math>\text{tan 225}^{\circ }</math>, which is the gradient of the line that makes an angle of
 +
<math>\text{45}^{\circ }</math>
 +
with the positive
 +
<math>x</math>
 +
-axis, equals
 +
<math>\text{tan 225}^{\circ }</math>, because the line which makes an angle of
 +
<math>\text{45}^{\circ }</math>
 +
has the same slope:
 +
 +
 +
<math>\tan 225^{\circ }\text{ }=\tan \text{45}^{\circ }=\frac{\sin \text{45}^{\circ }}{\cos \text{45}^{\circ }}=\frac{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}}=1</math>
 +
 +
 +
[[Image:4_2_5_b2.gif|center]]
[[Image:4_2_5_b2.gif|center]]

Version vom 08:04, 29. Sep. 2008

If we draw the angle \displaystyle \text{225}^{\circ }\text{ }=\text{ 18}0^{\circ }\text{ }+\text{ 45}^{\circ } on a unit circle, we see that it makes an angle of \displaystyle \text{45}^{\circ } with the negative \displaystyle x -axis.

This means that \displaystyle \text{tan 225}^{\circ }, which is the gradient of the line that makes an angle of \displaystyle \text{45}^{\circ } with the positive \displaystyle x -axis, equals \displaystyle \text{tan 225}^{\circ }, because the line which makes an angle of \displaystyle \text{45}^{\circ } has the same slope:


\displaystyle \tan 225^{\circ }\text{ }=\tan \text{45}^{\circ }=\frac{\sin \text{45}^{\circ }}{\cos \text{45}^{\circ }}=\frac{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}}=1