Lösung 4.2:5a
Aus Online Mathematik Brückenkurs 1
K (Lösning 4.2:5a moved to Solution 4.2:5a: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | Because |
- | < | + | <math>\text{135}^{\circ }\text{ }=\text{ 9}0^{\circ }\text{ }+\text{45}^{\circ }</math>, |
- | {{ | + | <math>\text{135}^{\circ }\text{ }</math> |
+ | is an angle in the second quadrant which makes an angle of | ||
+ | <math>\text{45}^{\circ }</math> | ||
+ | with the positive | ||
+ | <math>y</math> | ||
+ | -axis. | ||
+ | |||
+ | |||
[[Image:4_2_5_a1.gif|center]] | [[Image:4_2_5_a1.gif|center]] | ||
+ | |||
+ | We can determine the point on the unit circle which corresponds to | ||
+ | <math>\text{135}^{\circ }\text{ }</math> | ||
+ | by introducing an auxiliary triangle and calculating its edges using trigonometry. | ||
+ | |||
+ | |||
[[Image:4_2_5_a2.gif|center]] | [[Image:4_2_5_a2.gif|center]] | ||
+ | |||
+ | opposite<math>=1\centerdot \sin \centerdot 45^{\circ }=\frac{1}{\sqrt{2}}</math> | ||
+ | |||
+ | adjacent | ||
+ | <math>=1\centerdot \cos \centerdot 45^{\circ }=\frac{1}{\sqrt{2}}</math> | ||
+ | |||
+ | |||
+ | The coordinates of the point are | ||
+ | <math>\left( -\frac{1}{\sqrt{2}} \right.,\left. \frac{1}{\sqrt{2}} \right)</math> | ||
+ | and this shows that | ||
+ | <math>\text{cos135}^{\circ }=-\frac{1}{\sqrt{2}}</math>. |
Version vom 07:56, 29. Sep. 2008
Because \displaystyle \text{135}^{\circ }\text{ }=\text{ 9}0^{\circ }\text{ }+\text{45}^{\circ }, \displaystyle \text{135}^{\circ }\text{ } is an angle in the second quadrant which makes an angle of \displaystyle \text{45}^{\circ } with the positive \displaystyle y -axis.
We can determine the point on the unit circle which corresponds to \displaystyle \text{135}^{\circ }\text{ } by introducing an auxiliary triangle and calculating its edges using trigonometry.
opposite\displaystyle =1\centerdot \sin \centerdot 45^{\circ }=\frac{1}{\sqrt{2}}
adjacent \displaystyle =1\centerdot \cos \centerdot 45^{\circ }=\frac{1}{\sqrt{2}}
The coordinates of the point are
\displaystyle \left( -\frac{1}{\sqrt{2}} \right.,\left. \frac{1}{\sqrt{2}} \right)
and this shows that
\displaystyle \text{cos135}^{\circ }=-\frac{1}{\sqrt{2}}.