Lösung 4.2:5a
Aus Online Mathematik Brückenkurs 1
K (Lösning 4.2:5a moved to Solution 4.2:5a: Robot: moved page) |
|||
| Zeile 1: | Zeile 1: | ||
| - | {{ | + | Because |
| - | < | + | <math>\text{135}^{\circ }\text{ }=\text{ 9}0^{\circ }\text{ }+\text{45}^{\circ }</math>, |
| - | {{ | + | <math>\text{135}^{\circ }\text{ }</math> |
| + | is an angle in the second quadrant which makes an angle of | ||
| + | <math>\text{45}^{\circ }</math> | ||
| + | with the positive | ||
| + | <math>y</math> | ||
| + | -axis. | ||
| + | |||
| + | |||
[[Image:4_2_5_a1.gif|center]] | [[Image:4_2_5_a1.gif|center]] | ||
| + | |||
| + | We can determine the point on the unit circle which corresponds to | ||
| + | <math>\text{135}^{\circ }\text{ }</math> | ||
| + | by introducing an auxiliary triangle and calculating its edges using trigonometry. | ||
| + | |||
| + | |||
[[Image:4_2_5_a2.gif|center]] | [[Image:4_2_5_a2.gif|center]] | ||
| + | |||
| + | opposite<math>=1\centerdot \sin \centerdot 45^{\circ }=\frac{1}{\sqrt{2}}</math> | ||
| + | |||
| + | adjacent | ||
| + | <math>=1\centerdot \cos \centerdot 45^{\circ }=\frac{1}{\sqrt{2}}</math> | ||
| + | |||
| + | |||
| + | The coordinates of the point are | ||
| + | <math>\left( -\frac{1}{\sqrt{2}} \right.,\left. \frac{1}{\sqrt{2}} \right)</math> | ||
| + | and this shows that | ||
| + | <math>\text{cos135}^{\circ }=-\frac{1}{\sqrt{2}}</math>. | ||
Version vom 07:56, 29. Sep. 2008
Because \displaystyle \text{135}^{\circ }\text{ }=\text{ 9}0^{\circ }\text{ }+\text{45}^{\circ }, \displaystyle \text{135}^{\circ }\text{ } is an angle in the second quadrant which makes an angle of \displaystyle \text{45}^{\circ } with the positive \displaystyle y -axis.
We can determine the point on the unit circle which corresponds to \displaystyle \text{135}^{\circ }\text{ } by introducing an auxiliary triangle and calculating its edges using trigonometry.
opposite\displaystyle =1\centerdot \sin \centerdot 45^{\circ }=\frac{1}{\sqrt{2}}
adjacent \displaystyle =1\centerdot \cos \centerdot 45^{\circ }=\frac{1}{\sqrt{2}}
The coordinates of the point are
\displaystyle \left( -\frac{1}{\sqrt{2}} \right.,\left. \frac{1}{\sqrt{2}} \right)
and this shows that
\displaystyle \text{cos135}^{\circ }=-\frac{1}{\sqrt{2}}.


