Lösung 2.3:2d
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K |
|||
Zeile 1: | Zeile 1: | ||
- | The equation can be written in normalized form (i.e. the coefficient in front of | + | The equation can be written in normalized form (i.e. the coefficient in front of ''x''² is 1) by dividing both sides by 4, |
- | + | ||
- | is | + | |
- | + | ||
- | ) by dividing both sides by | + | |
- | + | ||
+ | {{Displayed math||<math>x^{2}-7x+\frac{13}{4}=0\,\textrm{.}</math>}} | ||
- | + | Complete the square on the left-hand side, | |
- | + | {{Displayed math||<math>\begin{align} | |
- | + | x^{2}-7x+\frac{13}{4} | |
- | + | &= \Bigl(x-\frac{7}{2}\Bigr)^{2} - \Bigl(\frac{7}{2}\Bigr)^{2} + \frac{13}{4}\\[5pt] | |
- | + | &= \Bigl(x-\frac{7}{2}\Bigr)^{2} - \frac{49}{4} + \frac{13}{4}\\[5pt] | |
- | <math>\begin{align} | + | &= \Bigl(x-\frac{7}{2}\Bigr)^{2} - \frac{36}{4}\\[5pt] |
- | + | &= \Bigl(x-\frac{7}{2}\Bigr)^{2} - 9\,\textrm{.} | |
- | & =\ | + | \end{align}</math>}} |
- | \end{align}</math> | + | |
The equation can therefore be written as | The equation can therefore be written as | ||
- | + | {{Displayed math||<math>\Bigl(x-\frac{7}{2}\Bigr)^{2} - 9 = 0\,,</math>}} | |
- | <math>\ | + | |
and taking the square root gives the solutions as | and taking the square root gives the solutions as | ||
+ | :*<math>x-\frac{7}{2}=\sqrt{9}=3\,,\quad</math> i.e. <math>x=\frac{7}{2}+3=\frac{13}{2},</math> | ||
- | <math>x-\frac{7}{2}=\sqrt{9}=3 | + | :*<math>x-\frac{7}{2}=-\sqrt{9}=-3\,,\quad</math> i.e. <math>x=\frac{7}{2}-3=\frac{1}{2}.</math> |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | <math>x=\frac{7}{2}-3=\frac{1}{2}.</math> | + | |
- | + | ||
- | + | ||
- | + | ||
+ | As an extra check, we substitute ''x'' = 1/2 and ''x'' = 13/2 into the equation: | ||
- | + | :*''x'' = 1/2: <math>\ \text{LHS} = 4\cdot\Bigl(\frac{1}{2}\Bigr)^{2} - 28\cdot\frac{1}{2}+13 = 4\cdot\frac{1}{4}-14+13 = 1-14+13 = \text{RHS,}</math> | |
- | + | ||
- | + | ||
- | + | :*''x'' = 13/2: <math>\ \text{LHS} = 4\cdot\Bigl(\frac{13}{2}\Bigr)^{2} - 28\cdot\frac{13}{2}+13 = 4\cdot\frac{169}{4} - 14\cdot 13 + 13 = 169 - 182 + 13 = \text{RHS.}</math> | |
- | + | ||
- | + |
Version vom 07:55, 29. Sep. 2008
The equation can be written in normalized form (i.e. the coefficient in front of x² is 1) by dividing both sides by 4,
Complete the square on the left-hand side,
The equation can therefore be written as
and taking the square root gives the solutions as
- \displaystyle x-\frac{7}{2}=\sqrt{9}=3\,,\quad i.e. \displaystyle x=\frac{7}{2}+3=\frac{13}{2},
- \displaystyle x-\frac{7}{2}=-\sqrt{9}=-3\,,\quad i.e. \displaystyle x=\frac{7}{2}-3=\frac{1}{2}.
As an extra check, we substitute x = 1/2 and x = 13/2 into the equation:
- x = 1/2: \displaystyle \ \text{LHS} = 4\cdot\Bigl(\frac{1}{2}\Bigr)^{2} - 28\cdot\frac{1}{2}+13 = 4\cdot\frac{1}{4}-14+13 = 1-14+13 = \text{RHS,}
- x = 13/2: \displaystyle \ \text{LHS} = 4\cdot\Bigl(\frac{13}{2}\Bigr)^{2} - 28\cdot\frac{13}{2}+13 = 4\cdot\frac{169}{4} - 14\cdot 13 + 13 = 169 - 182 + 13 = \text{RHS.}