Lösung 4.2:4d

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 4.2:4d moved to Solution 4.2:4d: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
If we use the unit circle and mark on the angle
-
<center> [[Image:4_2_4d.gif]] </center>
+
<math>\pi </math>, we see immediately that
-
{{NAVCONTENT_STOP}}
+
<math>\text{cos }\pi \text{ }=-\text{1 }</math>
 +
and
 +
<math>\text{sin }\pi \text{ }=0</math>.
 +
 
[[Image:4_2_4_d.gif|center]]
[[Image:4_2_4_d.gif|center]]
 +
 +
Thus,
 +
 +
 +
<math>\tan \pi =\frac{\sin \pi }{\cos \pi }=\frac{0}{-1}=0</math>

Version vom 13:15, 28. Sep. 2008

If we use the unit circle and mark on the angle \displaystyle \pi , we see immediately that \displaystyle \text{cos }\pi \text{ }=-\text{1 } and \displaystyle \text{sin }\pi \text{ }=0.

Thus,


\displaystyle \tan \pi =\frac{\sin \pi }{\cos \pi }=\frac{0}{-1}=0