Lösung 4.2:4d
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (Lösning 4.2:4d moved to Solution 4.2:4d: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | + | If we use the unit circle and mark on the angle | |
- | < | + | <math>\pi </math>, we see immediately that |
- | {{ | + | <math>\text{cos }\pi \text{ }=-\text{1 }</math> |
+ | and | ||
+ | <math>\text{sin }\pi \text{ }=0</math>. | ||
+ | |||
[[Image:4_2_4_d.gif|center]] | [[Image:4_2_4_d.gif|center]] | ||
+ | |||
+ | Thus, | ||
+ | |||
+ | |||
+ | <math>\tan \pi =\frac{\sin \pi }{\cos \pi }=\frac{0}{-1}=0</math> |
Version vom 13:15, 28. Sep. 2008
If we use the unit circle and mark on the angle \displaystyle \pi , we see immediately that \displaystyle \text{cos }\pi \text{ }=-\text{1 } and \displaystyle \text{sin }\pi \text{ }=0.
Thus,
\displaystyle \tan \pi =\frac{\sin \pi }{\cos \pi }=\frac{0}{-1}=0