Lösung 4.2:4c
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (Lösning 4.2:4c moved to Solution 4.2:4c: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | In exercise e, we studied the angle |
- | < | + | <math>\frac{3\pi }{4}</math> |
- | {{ | + | and found that |
+ | |||
+ | <math>\cos \frac{3\pi }{4}=-\frac{1}{\sqrt{2}}</math> | ||
+ | and | ||
+ | <math>\sin \frac{3\pi }{4}=\frac{1}{\sqrt{2}}</math> | ||
+ | |||
+ | |||
+ | Because | ||
+ | <math>\text{tan }x</math> | ||
+ | is defined as | ||
+ | <math>\frac{\sin x}{\cos x}</math>, we get immediately that | ||
+ | |||
+ | |||
+ | <math>\tan \frac{3\pi }{4}=\frac{\sin \frac{3\pi }{4}}{\cos \frac{3\pi }{4}}=\frac{\frac{1}{\sqrt{2}}}{-\frac{1}{\sqrt{2}}}=-1</math> |
Version vom 13:11, 28. Sep. 2008
In exercise e, we studied the angle \displaystyle \frac{3\pi }{4} and found that
\displaystyle \cos \frac{3\pi }{4}=-\frac{1}{\sqrt{2}} and \displaystyle \sin \frac{3\pi }{4}=\frac{1}{\sqrt{2}}
Because
\displaystyle \text{tan }x
is defined as
\displaystyle \frac{\sin x}{\cos x}, we get immediately that
\displaystyle \tan \frac{3\pi }{4}=\frac{\sin \frac{3\pi }{4}}{\cos \frac{3\pi }{4}}=\frac{\frac{1}{\sqrt{2}}}{-\frac{1}{\sqrt{2}}}=-1