Lösung 4.2:1f
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (Lösning 4.2:1f moved to Solution 4.2:1f: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{NAVCONTENT_START}} | ||
- | <center> [[Image:4_2_1f.gif]] </center> | ||
- | {{NAVCONTENT_STOP}} | ||
[[Image:4_2_1_f.gif|center]] | [[Image:4_2_1_f.gif|center]] | ||
+ | |||
+ | The side adjacent to the angle of | ||
+ | <math>\text{5}0^{\circ }</math> | ||
+ | is marked | ||
+ | <math>x</math> | ||
+ | and the opposite is the side of length | ||
+ | <math>\text{19}</math>. | ||
+ | |||
+ | |||
+ | |||
+ | If we write the tangent for the angle, this gives a relation which contains | ||
+ | <math>x</math> | ||
+ | as the only unknown, | ||
+ | |||
+ | |||
+ | <math>\tan 50^{\circ }=\frac{19}{x}</math> | ||
+ | |||
+ | |||
+ | This gives | ||
+ | |||
+ | |||
+ | <math>x=\frac{19}{\tan 50^{\circ }}\quad \left( \approx 15.9 \right)</math> |
Version vom 11:17, 28. Sep. 2008
The side adjacent to the angle of \displaystyle \text{5}0^{\circ } is marked \displaystyle x and the opposite is the side of length \displaystyle \text{19}.
If we write the tangent for the angle, this gives a relation which contains \displaystyle x as the only unknown,
\displaystyle \tan 50^{\circ }=\frac{19}{x}
This gives
\displaystyle x=\frac{19}{\tan 50^{\circ }}\quad \left( \approx 15.9 \right)