Lösung 4.2:1e
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (Lösning 4.2:1e moved to Solution 4.2:1e: Robot: moved page) |
|||
| Zeile 1: | Zeile 1: | ||
| - | {{NAVCONTENT_START}} | ||
| - | <center> [[Image:4_2_1e.gif]] </center> | ||
| - | {{NAVCONTENT_STOP}} | ||
[[Image:4_2_1_e.gif|center]] | [[Image:4_2_1_e.gif|center]] | ||
| + | |||
| + | In the triangle, we seek the hypotenuse | ||
| + | <math>x</math>, knowing the angle 35o and that the adjacent has length 11. | ||
| + | |||
| + | |||
| + | The definition of sine gives | ||
| + | |||
| + | |||
| + | <math>\sin 35^{\circ }=\frac{11}{x}</math> | ||
| + | |||
| + | |||
| + | and thus | ||
| + | |||
| + | |||
| + | <math>x=\frac{11}{\sin 35^{\circ }}\quad \left( \approx 19.2 \right)</math> | ||
Version vom 11:12, 28. Sep. 2008
In the triangle, we seek the hypotenuse \displaystyle x, knowing the angle 35o and that the adjacent has length 11.
The definition of sine gives
\displaystyle \sin 35^{\circ }=\frac{11}{x}
and thus
\displaystyle x=\frac{11}{\sin 35^{\circ }}\quad \left( \approx 19.2 \right)

