Lösung 4.2:1a

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 4.2:1a moved to Solution 4.2:1a: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
 
-
<center> [[Image:4_2_1a.gif]] </center>
 
-
{{NAVCONTENT_STOP}}
 
[[Image:4_2_1_a.gif|center]]
[[Image:4_2_1_a.gif|center]]
 +
 +
 +
 +
The definition of the tangent states that
 +
 +
 +
 +
<math>\tan u=\frac{\text{opposite}}{\text{adjacent}}</math>
 +
 +
 +
In our case, this means that
 +
 +
 +
<math>\tan 27^{\circ }=\frac{x}{13}</math>
 +
 +
 +
which gives
 +
<math>x=\text{13}\centerdot \text{tan 27}^{\circ }</math>.
 +
 +
NOTE: Using a calculator, we can work out what
 +
<math>x\text{ }</math>
 +
should be:
 +
 +
 +
<math>x=\text{13}\centerdot \text{tan 27}^{\circ }\approx 6.62</math>

Version vom 10:27, 28. Sep. 2008


The definition of the tangent states that


\displaystyle \tan u=\frac{\text{opposite}}{\text{adjacent}}


In our case, this means that


\displaystyle \tan 27^{\circ }=\frac{x}{13}


which gives \displaystyle x=\text{13}\centerdot \text{tan 27}^{\circ }.

NOTE: Using a calculator, we can work out what \displaystyle x\text{ } should be:


\displaystyle x=\text{13}\centerdot \text{tan 27}^{\circ }\approx 6.62