Lösung 4.1:7c

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 4.1:7c moved to Solution 4.1:7c: Robot: moved page)
Zeile 1: Zeile 1:
 +
By completing the square, we can rewrite the
 +
<math>x</math>
 +
- and
 +
<math>y</math>
 +
-terms as quadratic expressions,
 +
 +
 +
<math>x^{2}-2x=\left( x-1 \right)^{2}-1^{2}</math>
 +
 +
 +
<math>y^{2}+6y=\left( y+3 \right)^{2}-3^{2}</math>
 +
 +
and the whole equation then has standard form,
 +
 +
 +
<math>\begin{align}
 +
& \left( x-1 \right)^{2}-1+\left( y+3 \right)^{2}-9=-3 \\
 +
& \Leftrightarrow \quad \left( x-1 \right)^{2}+\left( y+3 \right)^{2}=7 \\
 +
\end{align}</math>
 +
 +
 +
From this, we see that the circle has its centre at
 +
<math>\left( 1 \right.,\left. -3 \right)</math>
 +
and radius
 +
<math>\sqrt{7}</math>.
 +
 +
{{NAVCONTENT_START}}
{{NAVCONTENT_START}}
<center> [[Image:4_1_7_c.gif]] </center>
<center> [[Image:4_1_7_c.gif]] </center>
-
<center> [[Image:4_1_7c.gif]] </center>
 
{{NAVCONTENT_STOP}}
{{NAVCONTENT_STOP}}

Version vom 12:06, 27. Sep. 2008

By completing the square, we can rewrite the \displaystyle x - and \displaystyle y -terms as quadratic expressions,


\displaystyle x^{2}-2x=\left( x-1 \right)^{2}-1^{2}


\displaystyle y^{2}+6y=\left( y+3 \right)^{2}-3^{2}

and the whole equation then has standard form,


\displaystyle \begin{align} & \left( x-1 \right)^{2}-1+\left( y+3 \right)^{2}-9=-3 \\ & \Leftrightarrow \quad \left( x-1 \right)^{2}+\left( y+3 \right)^{2}=7 \\ \end{align}


From this, we see that the circle has its centre at \displaystyle \left( 1 \right.,\left. -3 \right) and radius \displaystyle \sqrt{7}.