Lösung 4.1:6b

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 4.1:6b moved to Solution 4.1:6b: Robot: moved page)
Zeile 1: Zeile 1:
 +
A quick way to interpret the equation is to compare it with the standard formula for the equation of a circle with centre at
 +
<math>\left( a \right.,\left. b \right)</math>
 +
and radius
 +
<math>r</math>,
 +
 +
 +
<math>\left( x-a \right)^{2}+\left( y-b \right)^{2}=r^{2}</math>
 +
 +
 +
In our case, we can write the equation as
 +
 +
 +
<math>\left( x-1 \right)^{2}+\left( y-2 \right)^{2}=\left( \sqrt{3} \right)^{2}</math>
 +
 +
 +
and then we see that it describes a circle with centre at
 +
<math>\left( 1 \right.,\left. 2 \right)</math>
 +
and radius
 +
 +
{{NAVCONTENT_START}}
{{NAVCONTENT_START}}
[[Image:4_1_6_b.gif|center]]
[[Image:4_1_6_b.gif|center]]
-
<center> [[Image:4_1_6b.gif]] </center>
 
{{NAVCONTENT_STOP}}
{{NAVCONTENT_STOP}}

Version vom 11:33, 27. Sep. 2008

A quick way to interpret the equation is to compare it with the standard formula for the equation of a circle with centre at \displaystyle \left( a \right.,\left. b \right) and radius \displaystyle r,


\displaystyle \left( x-a \right)^{2}+\left( y-b \right)^{2}=r^{2}


In our case, we can write the equation as


\displaystyle \left( x-1 \right)^{2}+\left( y-2 \right)^{2}=\left( \sqrt{3} \right)^{2}


and then we see that it describes a circle with centre at \displaystyle \left( 1 \right.,\left. 2 \right) and radius