Lösung 4.1:6a

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 4.1:6a moved to Solution 4.1:6a: Robot: moved page)
Zeile 1: Zeile 1:
 +
If we write the equation as
 +
 +
 +
<math>\left( x-0 \right)^{2}+\left( y-0 \right)^{2}=9</math>
 +
 +
 +
we can interpret the left-hand side as the square of the distance between the points
 +
<math>\left( x \right.,\left. y \right)</math>
 +
and
 +
<math>\left( 0 \right.,\left. 0 \right)</math>.
 +
The whole equation says that the distance from a point (
 +
<math>\left( x \right.,\left. y \right)</math>
 +
to the origin should be constant and equal to
 +
<math>\sqrt{9}=3</math>, which describes a circle with its centre at the origin and radius
 +
<math>\text{3}</math>.
 +
 +
 +
{{NAVCONTENT_START}}
{{NAVCONTENT_START}}
<center> [[Image:4_1_6_a.gif]] </center>
<center> [[Image:4_1_6_a.gif]] </center>
-
<center> [[Image:4_1_6a.gif]] </center>
+
 
{{NAVCONTENT_STOP}}
{{NAVCONTENT_STOP}}

Version vom 11:27, 27. Sep. 2008

If we write the equation as


\displaystyle \left( x-0 \right)^{2}+\left( y-0 \right)^{2}=9


we can interpret the left-hand side as the square of the distance between the points \displaystyle \left( x \right.,\left. y \right) and \displaystyle \left( 0 \right.,\left. 0 \right). The whole equation says that the distance from a point ( \displaystyle \left( x \right.,\left. y \right) to the origin should be constant and equal to \displaystyle \sqrt{9}=3, which describes a circle with its centre at the origin and radius \displaystyle \text{3}.