Lösung 4.1:4a

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 4.1:4a moved to Solution 4.1:4a: Robot: moved page)
Zeile 1: Zeile 1:
 +
If we draw in the points in a coordinate system, we can see the line between the points as the hypotenuse in an imaginary right-angled triangle, where the opposite and adjacent are parallel with the
 +
<math>x</math>
 +
- and
 +
<math>y</math>
 +
-axes.
 +
{{NAVCONTENT_START}}
{{NAVCONTENT_START}}
 +
[[Image:4_1_4_a-1(2)_1.gif|center]]
[[Image:4_1_4_a-1(2)_1.gif|center]]
 +
In this triangle, it is easy to measure the lengths of the opposite and the adjacent, which are simply the distances between the points in the
 +
<math>x</math>
 +
-
 +
<math>y</math>
 +
-directions.
[[Image:4_1_4_a-1(2)_2.gif|center]]
[[Image:4_1_4_a-1(2)_2.gif|center]]
-
<center> [[Image:4_1_4a-1(2).gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
-
{{NAVCONTENT_START}}
+
-
<center> [[Image:4_1_4a-2(2).gif]] </center>
+
{{NAVCONTENT_STOP}}
{{NAVCONTENT_STOP}}
 +
 +
Using Pythagoras' theorem, we can then calculate the length of the hypotenuse, which is also the distance between the points:
 +
 +
 +
<math>\begin{align}
 +
& d=\sqrt{\left( \Delta x \right)^{2}+\left( \Delta y \right)^{2}}=\sqrt{4^{2}+3^{2}} \\
 +
& =\sqrt{16+9}=\sqrt{25}=5 \\
 +
\end{align}</math>
 +
 +
 +
NOTE: In general, the distance between two points
 +
<math>\left( x \right.,\left. y \right)</math>
 +
and
 +
<math>\left( a \right.,\left. b \right)</math>
 +
is given by the formula
 +
 +
 +
<math>d=\sqrt{\left( x-a \right)^{2}+\left( y-b \right)^{2}}</math>

Version vom 09:56, 27. Sep. 2008

If we draw in the points in a coordinate system, we can see the line between the points as the hypotenuse in an imaginary right-angled triangle, where the opposite and adjacent are parallel with the \displaystyle x - and \displaystyle y -axes.

Using Pythagoras' theorem, we can then calculate the length of the hypotenuse, which is also the distance between the points:


\displaystyle \begin{align} & d=\sqrt{\left( \Delta x \right)^{2}+\left( \Delta y \right)^{2}}=\sqrt{4^{2}+3^{2}} \\ & =\sqrt{16+9}=\sqrt{25}=5 \\ \end{align}


NOTE: In general, the distance between two points \displaystyle \left( x \right.,\left. y \right) and \displaystyle \left( a \right.,\left. b \right) is given by the formula


\displaystyle d=\sqrt{\left( x-a \right)^{2}+\left( y-b \right)^{2}}