Lösung 4.1:3c
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (Lösning 4.1:3c moved to Solution 4.1:3c: Robot: moved page) |
|||
| Zeile 1: | Zeile 1: | ||
| - | {{ | + | In this right-angled triangle, the side of length |
| - | < | + | <math>\text{17}</math> |
| - | {{ | + | is the hypotenuse (it is the side which is opposite the right angle). Pythagoras' theorem then gives |
| + | |||
| + | |||
| + | <math>\text{17}^{2}=8^{2}+x^{2}</math> | ||
| + | |||
| + | |||
| + | or | ||
| + | |||
| + | |||
| + | <math>x^{2}=\text{17}^{2}-8^{2}</math> | ||
| + | |||
| + | |||
| + | We get | ||
| + | |||
| + | |||
| + | <math>\begin{align} | ||
| + | & x=\sqrt{\text{17}^{2}-8^{2}}=\sqrt{289-64}=\sqrt{225} \\ | ||
| + | & =\sqrt{9\centerdot 25}=\sqrt{3^{2}\centerdot 5^{2}}=3\centerdot 5=15. \\ | ||
| + | \end{align}</math> | ||
Version vom 09:36, 27. Sep. 2008
In this right-angled triangle, the side of length \displaystyle \text{17} is the hypotenuse (it is the side which is opposite the right angle). Pythagoras' theorem then gives
\displaystyle \text{17}^{2}=8^{2}+x^{2}
or
\displaystyle x^{2}=\text{17}^{2}-8^{2}
We get
\displaystyle \begin{align}
& x=\sqrt{\text{17}^{2}-8^{2}}=\sqrt{289-64}=\sqrt{225} \\
& =\sqrt{9\centerdot 25}=\sqrt{3^{2}\centerdot 5^{2}}=3\centerdot 5=15. \\
\end{align}
