Lösung 4.1:3b

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 4.1:3b moved to Solution 4.1:3b: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
Because one of the angles in the triangle is
-
<center> [[Image:4_1_3b.gif]] </center>
+
<math>90^{\circ }</math>, we have a right-angled triangle and can use Pythagoras' theorem to set up a relation between the triangle's sides.
-
{{NAVCONTENT_STOP}}
+
 
 +
The side of length
 +
<math>\text{13}</math>
 +
is the hypotenuse in the triangle, and Pythagoras' theorem therefore gives us that
 +
 
 +
 
 +
<math>13^{2}=12^{2}+x^{2}</math>
 +
 
 +
 
 +
i.e.
 +
 
 +
 
 +
<math>x^{2}=13^{2}-12^{2}</math>
 +
 
 +
 
 +
This means that
 +
 
 +
 
 +
<math>x=\sqrt{13^{2}-12^{2}}=\sqrt{169-144}=\sqrt{25}=5</math>

Version vom 09:32, 27. Sep. 2008

Because one of the angles in the triangle is \displaystyle 90^{\circ }, we have a right-angled triangle and can use Pythagoras' theorem to set up a relation between the triangle's sides.

The side of length \displaystyle \text{13} is the hypotenuse in the triangle, and Pythagoras' theorem therefore gives us that


\displaystyle 13^{2}=12^{2}+x^{2}


i.e.


\displaystyle x^{2}=13^{2}-12^{2}


This means that


\displaystyle x=\sqrt{13^{2}-12^{2}}=\sqrt{169-144}=\sqrt{25}=5