Lösung 2.3:1a

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
-
If we consider the squaring rule
+
If we consider the rule
 +
{{Displayed math||<math>(x-a)^{2} = x^{2}-2ax+a^{2}</math>}}
-
<math>\left( x-a \right)^{2}=x^{2}-2ax+a^{2}</math>
+
and move <math>a^{2}</math> over to the left-hand side, we obtain the formula
-
and move
+
{{Displayed math||<math>(x-a)^{2}-a^{2} = x^{2}-2ax\,\textrm{.}</math>}}
-
<math>a^{2}</math>
+
-
over to the left-hand side, we obtain the formula
+
 +
With the help of this formula, we can rewrite (complete the square of) a mixed expression <math>x^{2}-2ax</math> to a obtain a quadratic expression, <math>(x-a)^{2}-a^{2}</math>.
-
<math>\left( x-a \right)^{2}-a^{2}=x^{2}-2ax</math>
+
The expression <math>x^{2}-2x</math> corresponds to <math>a=1</math> in the formula above and thus
-
 
+
{{Displayed math||<math>x^{2}-2x = (x-1)^{2}-1\,\textrm{.}</math>}}
-
<math></math>
+
-
 
+
-
 
+
-
With the help of this formula, we can rewrite (complete the square of) a mixed expression
+
-
<math>x^{2}-2ax</math>
+
-
to a obtain a quadratic expression,
+
-
<math>\left( x-a \right)^{2}-a^{2}</math>
+
-
.
+
-
 
+
-
The expression
+
-
<math>x^{2}-2x</math>
+
-
corresponds to
+
-
<math>a=1</math>
+
-
in the formula above and thus
+
-
 
+
-
 
+
-
<math>x^{2}-2x=\left( x-1 \right)^{2}-1</math>
+

Version vom 13:22, 26. Sep. 2008

If we consider the rule

Vorlage:Displayed math

and move \displaystyle a^{2} over to the left-hand side, we obtain the formula

Vorlage:Displayed math

With the help of this formula, we can rewrite (complete the square of) a mixed expression \displaystyle x^{2}-2ax to a obtain a quadratic expression, \displaystyle (x-a)^{2}-a^{2}.

The expression \displaystyle x^{2}-2x corresponds to \displaystyle a=1 in the formula above and thus

Vorlage:Displayed math