Lösung 2.3:1a
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K |
|||
Zeile 1: | Zeile 1: | ||
- | If we consider the | + | If we consider the rule |
+ | {{Displayed math||<math>(x-a)^{2} = x^{2}-2ax+a^{2}</math>}} | ||
- | <math> | + | and move <math>a^{2}</math> over to the left-hand side, we obtain the formula |
- | + | {{Displayed math||<math>(x-a)^{2}-a^{2} = x^{2}-2ax\,\textrm{.}</math>}} | |
- | <math>a^{2}</math> | + | |
- | + | ||
+ | With the help of this formula, we can rewrite (complete the square of) a mixed expression <math>x^{2}-2ax</math> to a obtain a quadratic expression, <math>(x-a)^{2}-a^{2}</math>. | ||
- | <math> | + | The expression <math>x^{2}-2x</math> corresponds to <math>a=1</math> in the formula above and thus |
- | + | {{Displayed math||<math>x^{2}-2x = (x-1)^{2}-1\,\textrm{.}</math>}} | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | <math>x^{2}-2x | + | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + |
Version vom 13:22, 26. Sep. 2008
If we consider the rule
and move \displaystyle a^{2} over to the left-hand side, we obtain the formula
With the help of this formula, we can rewrite (complete the square of) a mixed expression \displaystyle x^{2}-2ax to a obtain a quadratic expression, \displaystyle (x-a)^{2}-a^{2}.
The expression \displaystyle x^{2}-2x corresponds to \displaystyle a=1 in the formula above and thus