Lösung 3.4:3c
Aus Online Mathematik Brückenkurs 1
K (Lösning 3.4:3c moved to Solution 3.4:3c: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | With the log laws, we can write the left-hand side as one logarithmic expression, |
- | < | + | |
- | {{ | + | |
- | {{ | + | <math>\ln x+\ln \left( x+4 \right)=\ln \left( x\left( x+4 \right) \right)</math> |
- | < | + | |
- | {{ | + | |
+ | but this rewriting presupposes that the expressions | ||
+ | <math>\text{ln }x\text{ }</math> | ||
+ | and | ||
+ | <math>\text{ln}\left( x+\text{4} \right)</math> | ||
+ | are defined, i.e. | ||
+ | <math>x>0</math> | ||
+ | and | ||
+ | <math>x+\text{4}>0</math>. Therefore, if we choose to continue with the equation | ||
+ | |||
+ | |||
+ | <math>\ln \left( x\left( x+4 \right) \right)=\ln \left( 2x+3 \right)</math> | ||
+ | |||
+ | |||
+ | we must remember to permit only solutions that satisfy | ||
+ | <math>x>0</math> | ||
+ | (the condition | ||
+ | <math>x+\text{4}>0</math> | ||
+ | is then automatically satisfied). | ||
+ | |||
+ | The equation rewritten in this way is, in turn, only satisfied if the arguments | ||
+ | <math>x\left( x+\text{4} \right)\text{ }</math> | ||
+ | and | ||
+ | <math>\text{2}x+\text{3}</math> | ||
+ | are equal to each other and positive, i.e. | ||
+ | |||
+ | |||
+ | <math>x\left( x+\text{4} \right)=\text{2}x+\text{3}</math> | ||
+ | |||
+ | |||
+ | We rewrite this equation as | ||
+ | <math>x^{\text{2}}-\text{2}x-\text{3}=0</math> | ||
+ | and completing the square gives | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \left( x+1 \right)^{2}-1^{2}-3=0 \\ | ||
+ | & \left( x+1 \right)^{2}=4 \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | which means that | ||
+ | <math>x=-\text{1}\pm \text{2}</math>, i.e. | ||
+ | <math>x=-\text{3}</math> | ||
+ | and | ||
+ | <math>x=\text{1}</math>. | ||
+ | |||
+ | Because | ||
+ | <math>x=-\text{3}</math> | ||
+ | is negative, we neglect it, whilst for | ||
+ | <math>x=\text{1}</math> | ||
+ | we have both that | ||
+ | <math>x>0\text{ }</math> | ||
+ | and | ||
+ | <math>x\left( x+\text{4} \right)=\text{2}x+\text{3}>0</math>. Therefore, the answer is | ||
+ | <math>x=\text{1}</math>. |
Version vom 12:05, 26. Sep. 2008
With the log laws, we can write the left-hand side as one logarithmic expression,
\displaystyle \ln x+\ln \left( x+4 \right)=\ln \left( x\left( x+4 \right) \right)
but this rewriting presupposes that the expressions
\displaystyle \text{ln }x\text{ }
and
\displaystyle \text{ln}\left( x+\text{4} \right)
are defined, i.e.
\displaystyle x>0
and
\displaystyle x+\text{4}>0. Therefore, if we choose to continue with the equation
\displaystyle \ln \left( x\left( x+4 \right) \right)=\ln \left( 2x+3 \right)
we must remember to permit only solutions that satisfy
\displaystyle x>0
(the condition
\displaystyle x+\text{4}>0
is then automatically satisfied).
The equation rewritten in this way is, in turn, only satisfied if the arguments \displaystyle x\left( x+\text{4} \right)\text{ } and \displaystyle \text{2}x+\text{3} are equal to each other and positive, i.e.
\displaystyle x\left( x+\text{4} \right)=\text{2}x+\text{3}
We rewrite this equation as
\displaystyle x^{\text{2}}-\text{2}x-\text{3}=0
and completing the square gives
\displaystyle \begin{align}
& \left( x+1 \right)^{2}-1^{2}-3=0 \\
& \left( x+1 \right)^{2}=4 \\
\end{align}
which means that
\displaystyle x=-\text{1}\pm \text{2}, i.e.
\displaystyle x=-\text{3}
and
\displaystyle x=\text{1}.
Because \displaystyle x=-\text{3} is negative, we neglect it, whilst for \displaystyle x=\text{1} we have both that \displaystyle x>0\text{ } and \displaystyle x\left( x+\text{4} \right)=\text{2}x+\text{3}>0. Therefore, the answer is \displaystyle x=\text{1}.