Lösung 3.3:6a

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 3.3:6a moved to Solution 3.3:6a: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
The calculator does not have button for
-
<center> [[Image:3_3_6a-1(2).gif]] </center>
+
<math>\log _{3}</math>, but it does have one for the natural logarithm ln, so we need to rewrite
-
{{NAVCONTENT_STOP}}
+
<math>\log _{3}4</math>
-
{{NAVCONTENT_START}}
+
in terms of ln.
-
<center> [[Image:3_3_6a-2(2).gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
If we go back to the definition of the logarithm, we see that
-
[[Image:3_3_6_a.gif|center]]
+
<math>\log _{3}4</math>
 +
is that number which satisfies
 +
 
 +
 
 +
<math>3^{\log _{3}4}=4</math>
 +
 
 +
 
 +
Now, take the natural logarithm of both sides,
 +
 
 +
 
 +
<math>\ln 3^{\log _{3}4}=\ln 4</math>
 +
 
 +
 
 +
Using the logarithm law,
 +
<math>\lg a^{b}=b\lg a</math>, the left-hand side can be written as
 +
<math>\log _{3}4\centerdot \ln 3</math>
 +
and the relation is
 +
 
 +
 
 +
<math>\log _{3}4\centerdot \ln 3=\ln 4</math>
 +
 
 +
 
 +
Thus, after dividing by
 +
<math>\text{ln 3}</math>, we have
 +
 
 +
 
 +
<math>\log _{3}4=\frac{\ln 4}{\ln 3}=\frac{1.386294...}{1.098612...}=1.2618595</math>
 +
 
 +
 
 +
which gives 1.262 as the rounded-off answer.
 +
 
 +
NOTE: on a calculator, the answer is obtained by pressing the buttons
 +
 
 +
 
 +
<math>\begin{align}
 +
& \left[ 4 \right]\quad \left[ \text{LN} \right]\quad \left[ \div \right]\quad \left[ 3 \right]\quad \left[ \text{LN} \right]\quad \left[ = \right] \\
 +
& \quad \left[ 4 \right]\quad \left[ \text{LN} \right]\quad \left[ \div \right]\quad \left[ 3 \right]\quad \left[ \text{LN} \right]\quad \left[ = \right] \\
 +
\end{align}</math>

Version vom 09:08, 26. Sep. 2008

The calculator does not have button for \displaystyle \log _{3}, but it does have one for the natural logarithm ln, so we need to rewrite \displaystyle \log _{3}4 in terms of ln.

If we go back to the definition of the logarithm, we see that \displaystyle \log _{3}4 is that number which satisfies


\displaystyle 3^{\log _{3}4}=4


Now, take the natural logarithm of both sides,


\displaystyle \ln 3^{\log _{3}4}=\ln 4


Using the logarithm law, \displaystyle \lg a^{b}=b\lg a, the left-hand side can be written as \displaystyle \log _{3}4\centerdot \ln 3 and the relation is


\displaystyle \log _{3}4\centerdot \ln 3=\ln 4


Thus, after dividing by \displaystyle \text{ln 3}, we have


\displaystyle \log _{3}4=\frac{\ln 4}{\ln 3}=\frac{1.386294...}{1.098612...}=1.2618595


which gives 1.262 as the rounded-off answer.

NOTE: on a calculator, the answer is obtained by pressing the buttons


\displaystyle \begin{align} & \left[ 4 \right]\quad \left[ \text{LN} \right]\quad \left[ \div \right]\quad \left[ 3 \right]\quad \left[ \text{LN} \right]\quad \left[ = \right] \\ & \quad \left[ 4 \right]\quad \left[ \text{LN} \right]\quad \left[ \div \right]\quad \left[ 3 \right]\quad \left[ \text{LN} \right]\quad \left[ = \right] \\ \end{align}