Lösung 3.3:3h

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 3.3:3h moved to Solution 3.3:3h: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
Because
-
<center> [[Image:3_3_3h.gif]] </center>
+
<math>a^{2}\sqrt{a}=a^{2}a^{\frac{1}{2}}=a^{2+\frac{1}{2}}=a^{\frac{5}{2}}</math>, the logarithm law,
-
{{NAVCONTENT_STOP}}
+
<math>b\lg a=\lg a^{b}</math>, gives that
 +
 
 +
 
 +
<math>\log _{a}a^{2}\sqrt{a}=\log _{a}a^{\frac{5}{2}}=\frac{5}{2}\centerdot \log _{a}a=\frac{5}{2}\centerdot 1=\frac{5}{2},</math>
 +
 
 +
 
 +
where we have used that
 +
<math>\log _{a}a=1</math>.
 +
 
 +
NOTE: In this exercise, we assume, implicitly, that
 +
<math>\text{a}>0\text{ }</math>
 +
and
 +
<math>\text{a}\ne \text{1}</math>.

Version vom 14:41, 25. Sep. 2008

Because \displaystyle a^{2}\sqrt{a}=a^{2}a^{\frac{1}{2}}=a^{2+\frac{1}{2}}=a^{\frac{5}{2}}, the logarithm law, \displaystyle b\lg a=\lg a^{b}, gives that


\displaystyle \log _{a}a^{2}\sqrt{a}=\log _{a}a^{\frac{5}{2}}=\frac{5}{2}\centerdot \log _{a}a=\frac{5}{2}\centerdot 1=\frac{5}{2},


where we have used that \displaystyle \log _{a}a=1.

NOTE: In this exercise, we assume, implicitly, that \displaystyle \text{a}>0\text{ } and \displaystyle \text{a}\ne \text{1}.