Lösung 3.3:3g
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (Lösning 3.3:3g moved to Solution 3.3:3g: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | Using the logarithm law, |
- | < | + | <math>\lg a-\lg b=\lg \left( \frac{a}{b} \right)</math>, the expression can be calculated as |
- | {{ | + | |
+ | |||
+ | <math>\log _{3}12-\log _{3}4=\log _{3}\frac{12}{4}=\log _{3}3=1</math> | ||
+ | |||
+ | |||
+ | Another way is to write | ||
+ | <math>\text{12}=\text{3}\centerdot \text{4 }</math> | ||
+ | and use the logarithm law, | ||
+ | <math>\lg \left( ab \right)=\lg a+\lg b</math>, | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \log _{3}12-\log _{3}4=\log _{3}\left( 3\centerdot 4 \right)-\log _{3}4 \\ | ||
+ | & =\log _{3}3+\log _{3}4-\log _{3}4=\log _{3}3=1 \\ | ||
+ | \end{align}</math> |
Version vom 14:33, 25. Sep. 2008
Using the logarithm law, \displaystyle \lg a-\lg b=\lg \left( \frac{a}{b} \right), the expression can be calculated as
\displaystyle \log _{3}12-\log _{3}4=\log _{3}\frac{12}{4}=\log _{3}3=1
Another way is to write
\displaystyle \text{12}=\text{3}\centerdot \text{4 }
and use the logarithm law,
\displaystyle \lg \left( ab \right)=\lg a+\lg b,
\displaystyle \begin{align}
& \log _{3}12-\log _{3}4=\log _{3}\left( 3\centerdot 4 \right)-\log _{3}4 \\
& =\log _{3}3+\log _{3}4-\log _{3}4=\log _{3}3=1 \\
\end{align}