Lösung 3.3:3g

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 3.3:3g moved to Solution 3.3:3g: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
Using the logarithm law,
-
<center> [[Image:3_3_3g.gif]] </center>
+
<math>\lg a-\lg b=\lg \left( \frac{a}{b} \right)</math>, the expression can be calculated as
-
{{NAVCONTENT_STOP}}
+
 
 +
 
 +
<math>\log _{3}12-\log _{3}4=\log _{3}\frac{12}{4}=\log _{3}3=1</math>
 +
 
 +
 
 +
Another way is to write
 +
<math>\text{12}=\text{3}\centerdot \text{4 }</math>
 +
and use the logarithm law,
 +
<math>\lg \left( ab \right)=\lg a+\lg b</math>,
 +
 
 +
 
 +
<math>\begin{align}
 +
& \log _{3}12-\log _{3}4=\log _{3}\left( 3\centerdot 4 \right)-\log _{3}4 \\
 +
& =\log _{3}3+\log _{3}4-\log _{3}4=\log _{3}3=1 \\
 +
\end{align}</math>

Version vom 14:33, 25. Sep. 2008

Using the logarithm law, \displaystyle \lg a-\lg b=\lg \left( \frac{a}{b} \right), the expression can be calculated as


\displaystyle \log _{3}12-\log _{3}4=\log _{3}\frac{12}{4}=\log _{3}3=1


Another way is to write \displaystyle \text{12}=\text{3}\centerdot \text{4 } and use the logarithm law, \displaystyle \lg \left( ab \right)=\lg a+\lg b,


\displaystyle \begin{align} & \log _{3}12-\log _{3}4=\log _{3}\left( 3\centerdot 4 \right)-\log _{3}4 \\ & =\log _{3}3+\log _{3}4-\log _{3}4=\log _{3}3=1 \\ \end{align}