Lösung 3.3:3f
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (Lösning 3.3:3f moved to Solution 3.3:3f: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | If we write |
- | < | + | <math>\text{4}</math> |
- | {{ | + | and |
+ | <math>\text{16}</math> | ||
+ | as | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \text{4}=2\centerdot 2=2^{2} \\ | ||
+ | & 16=2\centerdot 8=2\centerdot 2\centerdot 4=2\centerdot 2\centerdot 2\centerdot 2=2^{4} \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | we obtain | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \log _{2}4+\log _{2}\frac{1}{16}=\log _{2}2^{2}+\log _{2}\frac{1}{2^{4}} \\ | ||
+ | & =\log _{2}2^{2}+\log _{2}2^{-4}=2\centerdot \log _{2}2+\left( -4 \right)\centerdot \log _{2}2 \\ | ||
+ | & =2\centerdot 1+\left( -4 \right)\centerdot 1=-2 \\ | ||
+ | \end{align}</math> |
Version vom 14:28, 25. Sep. 2008
If we write \displaystyle \text{4} and \displaystyle \text{16} as
\displaystyle \begin{align}
& \text{4}=2\centerdot 2=2^{2} \\
& 16=2\centerdot 8=2\centerdot 2\centerdot 4=2\centerdot 2\centerdot 2\centerdot 2=2^{4} \\
\end{align}
we obtain
\displaystyle \begin{align}
& \log _{2}4+\log _{2}\frac{1}{16}=\log _{2}2^{2}+\log _{2}\frac{1}{2^{4}} \\
& =\log _{2}2^{2}+\log _{2}2^{-4}=2\centerdot \log _{2}2+\left( -4 \right)\centerdot \log _{2}2 \\
& =2\centerdot 1+\left( -4 \right)\centerdot 1=-2 \\
\end{align}