Lösung 3.3:3d

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 3.3:3d moved to Solution 3.3:3d: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
We write the argument of
-
<center> [[Image:3_3_3d.gif]] </center>
+
<math>\log _{3}</math>
-
{{NAVCONTENT_STOP}}
+
as a power of
 +
<math>\text{3}</math>,
 +
 
 +
 
 +
<math>9\centerdot 3^{{1}/{3}\;}=3^{2}\centerdot 3^{{1}/{3}\;}=3^{2+\frac{1}{3}}=3^{\frac{7}{3}}</math>
 +
 
 +
 
 +
and then simplify the expression with the logarithm laws:
 +
 
 +
 +
<math>\log _{3}\left( 9\centerdot 3^{{1}/{3}\;} \right)=\log _{3}3^{\frac{7}{3}}=\frac{7}{3}\centerdot \log _{3}3=\frac{7}{3}\centerdot 1=\frac{7}{3}.</math>

Version vom 14:19, 25. Sep. 2008

We write the argument of \displaystyle \log _{3} as a power of \displaystyle \text{3},


\displaystyle 9\centerdot 3^{{1}/{3}\;}=3^{2}\centerdot 3^{{1}/{3}\;}=3^{2+\frac{1}{3}}=3^{\frac{7}{3}}


and then simplify the expression with the logarithm laws:


\displaystyle \log _{3}\left( 9\centerdot 3^{{1}/{3}\;} \right)=\log _{3}3^{\frac{7}{3}}=\frac{7}{3}\centerdot \log _{3}3=\frac{7}{3}\centerdot 1=\frac{7}{3}.