Lösung 3.3:3b

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 3.3:3b moved to Solution 3.3:3b: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
Because we are working with
-
<center> [[Image:3_3_3b.gif]] </center>
+
<math>\log _{9}</math>, we express
-
{{NAVCONTENT_STOP}}
+
<math>{1}/{3}\;</math>
 +
as a power of
 +
<math>\text{9}</math>,
 +
 
 +
 
 +
<math>\frac{1}{3}=\frac{1}{\sqrt{9}}=\frac{1}{9^{{1}/{2}\;}}=9^{-{1}/{2}\;}</math>
 +
 
 +
 
 +
Using the logarithm laws, we get
 +
 
 +
 
 +
<math>\log _{9}\frac{1}{3}=\log _{9}9^{-{1}/{2}\;}=-\frac{1}{2}\centerdot \log _{9}9=-\frac{1}{2}\centerdot 1=-\frac{1}{2}.</math>

Version vom 14:06, 25. Sep. 2008

Because we are working with \displaystyle \log _{9}, we express \displaystyle {1}/{3}\; as a power of \displaystyle \text{9},


\displaystyle \frac{1}{3}=\frac{1}{\sqrt{9}}=\frac{1}{9^{{1}/{2}\;}}=9^{-{1}/{2}\;}


Using the logarithm laws, we get


\displaystyle \log _{9}\frac{1}{3}=\log _{9}9^{-{1}/{2}\;}=-\frac{1}{2}\centerdot \log _{9}9=-\frac{1}{2}\centerdot 1=-\frac{1}{2}.