Lösung 3.3:2g
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (Lösning 3.3:2g moved to Solution 3.3:2g: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | { | + | We know that |
- | < | + | <math>10^{\lg x}=x</math>, so therefore we rewrite the exponent as |
- | {{ | + | <math>-\lg 0.1=\left( -1 \right)\centerdot \lg 0.1=\lg 0.1^{-1}</math> |
+ | by using the log law | ||
+ | <math>b\lg a=\lg a^{b}</math>. This gives | ||
+ | |||
+ | |||
+ | <math>10^{-\lg 0.1}=10^{\lg 0.1^{-1}}=0.1^{-1}=\frac{1}{0.1}=10</math> |
Version vom 13:31, 25. Sep. 2008
We know that \displaystyle 10^{\lg x}=x, so therefore we rewrite the exponent as \displaystyle -\lg 0.1=\left( -1 \right)\centerdot \lg 0.1=\lg 0.1^{-1} by using the log law \displaystyle b\lg a=\lg a^{b}. This gives
\displaystyle 10^{-\lg 0.1}=10^{\lg 0.1^{-1}}=0.1^{-1}=\frac{1}{0.1}=10