Lösung 3.3:2g
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (Lösning 3.3:2g moved to Solution 3.3:2g: Robot: moved page) |
|||
| Zeile 1: | Zeile 1: | ||
| - | { | + | We know that |
| - | < | + | <math>10^{\lg x}=x</math>, so therefore we rewrite the exponent as |
| - | {{ | + | <math>-\lg 0.1=\left( -1 \right)\centerdot \lg 0.1=\lg 0.1^{-1}</math> |
| + | by using the log law | ||
| + | <math>b\lg a=\lg a^{b}</math>. This gives | ||
| + | |||
| + | |||
| + | <math>10^{-\lg 0.1}=10^{\lg 0.1^{-1}}=0.1^{-1}=\frac{1}{0.1}=10</math> | ||
Version vom 13:31, 25. Sep. 2008
We know that \displaystyle 10^{\lg x}=x, so therefore we rewrite the exponent as \displaystyle -\lg 0.1=\left( -1 \right)\centerdot \lg 0.1=\lg 0.1^{-1} by using the log law \displaystyle b\lg a=\lg a^{b}. This gives
\displaystyle 10^{-\lg 0.1}=10^{\lg 0.1^{-1}}=0.1^{-1}=\frac{1}{0.1}=10
