Lösung 3.1:8d
Aus Online Mathematik Brückenkurs 1
K (Lösning 3.1:8d moved to Solution 3.1:8d: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | In power form, the expressions become |
- | < | + | |
- | {{ | + | |
- | {{ | + | <math>\begin{align} |
- | < | + | & \sqrt{2}\left( \sqrt[4]{3} \right)^{3}=2^{{1}/{2}\;}\left( 3^{{1}/{4}\;} \right)^{3}=2^{{1}/{2}\;}3^{{3}/{4}\;}, \\ |
- | {{ | + | & \sqrt[3]{2}\centerdot 3=2^{{1}/{3}\;}3^{1} \\ |
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | Admittedly, it is true that | ||
+ | <math>2^{{1}/{2}\;}>2^{{1}/{3}\;}</math> | ||
+ | and | ||
+ | <math>3^{1}>3^{{3}/{4}\;}</math>, but this does not help us to say anything about how the products are related to each other. Instead, we observe that the exponents | ||
+ | <math>\frac{1}{2},\ \ \frac{3}{4},\ \ \frac{1}{3}</math> | ||
+ | and | ||
+ | <math>\text{1}</math> | ||
+ | have | ||
+ | <math>\text{3}\centerdot \text{4}=\text{12 }</math> | ||
+ | as the lowest common denominator which we can take out: | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & 2^{\frac{1}{2}}3^{\frac{3}{4}}=2^{\frac{6}{12}}3^{\frac{3\centerdot 3}{12}}=\left( 2^{6}\centerdot 3^{9} \right)^{\frac{1}{12}}, \\ | ||
+ | & 2^{\frac{1}{3}}3^{1}=2^{\frac{4}{12}}3^{\frac{12}{12}}=\left( 2^{4}\centerdot 3^{12} \right)^{\frac{1}{12}}. \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | Now, we can compare the bases | ||
+ | <math>\text{2}^{\text{6}}\centerdot \text{3}^{\text{9}}</math> | ||
+ | and | ||
+ | <math>\text{2}^{\text{4}}\centerdot \text{3}^{\text{12}}</math> | ||
+ | with each other and so decide which number is larger. | ||
+ | |||
+ | Because | ||
+ | |||
+ | |||
+ | <math>\frac{\text{2}^{\text{6}}\centerdot \text{3}^{\text{9}}}{\text{2}^{\text{4}}\centerdot \text{3}^{\text{12}}}=2^{6-4}3^{9-12}=2^{2}3^{-3}=\frac{2^{2}}{3^{3}}=\frac{4}{27}<1</math> | ||
+ | |||
+ | the denominator | ||
+ | <math>\text{2}^{\text{4}}\centerdot \text{3}^{\text{12}}</math> | ||
+ | is larger than the numerator | ||
+ | <math>\text{2}^{\text{6}}\centerdot \text{3}^{\text{9}}</math>, which means that | ||
+ | <math>\sqrt[3]{2}\centerdot 3</math> | ||
+ | is larger than | ||
+ | <math>\sqrt{2}\left( \sqrt[4]{3} \right)^{3}</math>. |
Version vom 11:39, 23. Sep. 2008
In power form, the expressions become
\displaystyle \begin{align}
& \sqrt{2}\left( \sqrt[4]{3} \right)^{3}=2^{{1}/{2}\;}\left( 3^{{1}/{4}\;} \right)^{3}=2^{{1}/{2}\;}3^{{3}/{4}\;}, \\
& \sqrt[3]{2}\centerdot 3=2^{{1}/{3}\;}3^{1} \\
\end{align}
Admittedly, it is true that
\displaystyle 2^{{1}/{2}\;}>2^{{1}/{3}\;}
and
\displaystyle 3^{1}>3^{{3}/{4}\;}, but this does not help us to say anything about how the products are related to each other. Instead, we observe that the exponents
\displaystyle \frac{1}{2},\ \ \frac{3}{4},\ \ \frac{1}{3}
and
\displaystyle \text{1}
have
\displaystyle \text{3}\centerdot \text{4}=\text{12 }
as the lowest common denominator which we can take out:
\displaystyle \begin{align}
& 2^{\frac{1}{2}}3^{\frac{3}{4}}=2^{\frac{6}{12}}3^{\frac{3\centerdot 3}{12}}=\left( 2^{6}\centerdot 3^{9} \right)^{\frac{1}{12}}, \\
& 2^{\frac{1}{3}}3^{1}=2^{\frac{4}{12}}3^{\frac{12}{12}}=\left( 2^{4}\centerdot 3^{12} \right)^{\frac{1}{12}}. \\
\end{align}
Now, we can compare the bases \displaystyle \text{2}^{\text{6}}\centerdot \text{3}^{\text{9}} and \displaystyle \text{2}^{\text{4}}\centerdot \text{3}^{\text{12}} with each other and so decide which number is larger.
Because
\displaystyle \frac{\text{2}^{\text{6}}\centerdot \text{3}^{\text{9}}}{\text{2}^{\text{4}}\centerdot \text{3}^{\text{12}}}=2^{6-4}3^{9-12}=2^{2}3^{-3}=\frac{2^{2}}{3^{3}}=\frac{4}{27}<1
the denominator \displaystyle \text{2}^{\text{4}}\centerdot \text{3}^{\text{12}} is larger than the numerator \displaystyle \text{2}^{\text{6}}\centerdot \text{3}^{\text{9}}, which means that \displaystyle \sqrt[3]{2}\centerdot 3 is larger than \displaystyle \sqrt{2}\left( \sqrt[4]{3} \right)^{3}.