Lösung 2.1:6a

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
-
Before we try dealing with the whole expression, we focus on simplifying the two factors individually by rewriting them using a common denominator:
+
Before we try dealing with the whole expression, we focus on simplifying the two factors individually by rewriting them using a common denominator
-
 
+
-
 
+
-
<math>\begin{align}
+
-
& x-y+\frac{x^{2}}{y-x}=\frac{\left( x-y \right)\left( y-x \right)}{y-x}+\frac{x^{2}}{y-x} \\
+
-
& \left\{ y-x=-\left( x-y \right) \right\} \\
+
-
& =\frac{-\left( x-y \right)^{2}}{y-x}+\frac{x^{2}}{y-x}=\frac{-\left( x-y \right)^{2}+x^{2}}{y-x}=\frac{-\left( x^{2}-2xy+y^{2} \right)+x^{2}}{y-x} \\
+
-
& =\frac{-x^{2}+2xy-y^{2}+x^{2}}{y-x}=\frac{2xy-y^{2}}{y-x}=\frac{y\left( 2x-y \right)}{y-x}, \\
+
-
\end{align}</math>
+
-
 
+
-
 
+
-
 
+
-
<math>\begin{align}
+
-
& \frac{y}{2x-y}-1=\frac{y}{2x-y}-\frac{2x-y}{2x-y}=\frac{y-\left( 2x-y \right)}{2x-y}=\frac{y-2x+y}{2x-y} \\
+
-
& =\frac{2y-2x}{2x-y}=\frac{2\left( y-x \right)}{2x-y} \\
+
-
\\
+
-
\end{align}</math>
+
 +
{{Displayed math||<math>\begin{align}
 +
x-y+\frac{x^{2}}{y-x} &= \frac{\left( x-y \right)\left( y-x \right)}{y-x}+\frac{x^{2}}{y-x} = \{\ y-x=-(x-y)\ \}\\[5pt]
 +
&= \frac{-(x-y)^{2}}{y-x}+\frac{x^{2}}{y-x} = \frac{-(x-y)^{2}+x^{2}}{y-x}\\[5pt]
 +
&= \frac{-(x^{2}-2xy+y^{2})+x^{2}}{y-x} = \frac{-x^{2}+2xy-y^{2}+x^{2}}{y-x}\\[5pt]
 +
&= \frac{2xy-y^{2}}{y-x} = \frac{y(2x-y)}{y-x},\\[15pt]
 +
\frac{y}{2x-y}-1
 +
&= \frac{y}{2x-y}-\frac{2x-y}{2x-y} = \frac{y-(2x-y)}{2x-y} = \frac{y-2x+y}{2x-y}\\[5pt]
 +
& =\frac{2y-2x}{2x-y} = \frac{2(y-x)}{2x-y}\,\textrm{.}
 +
\end{align}</math>}}
Then, we multiply the factors together and simplify by elimination:
Then, we multiply the factors together and simplify by elimination:
-
 
+
{{Displayed math||<math>\biggl(x-y+\frac{x^{2}}{y-x}\biggr) \biggl(\frac{y}{2x-y}-1\biggr) = \frac{y(2x-y)}{y-x}\cdot\frac{2(y-x)}{2x-y}=2y\,\textrm{.}</math>}}
-
<math>\left( x-y+\frac{x^{2}}{y-x} \right)\left( \frac{y}{2x-y}-1 \right)=\frac{y\left( 2x-y \right)}{y-x}\centerdot \frac{2\left( y-x \right)}{2x-y}=2y.</math>
+

Version vom 11:24, 23. Sep. 2008

Before we try dealing with the whole expression, we focus on simplifying the two factors individually by rewriting them using a common denominator

Vorlage:Displayed math

Then, we multiply the factors together and simplify by elimination:

Vorlage:Displayed math