Lösung 3.1:7b

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 3.1:7b moved to Solution 3.1:7b: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
We multiply the top and bottom of the fraction by the conjugate of the denominator,
-
<center> [[Image:3_1_7b.gif]] </center>
+
<math>\sqrt{7}+\sqrt{5}</math>
-
{{NAVCONTENT_STOP}}
+
, and see what it leads to:
 +
 
 +
 
 +
<math>\begin{align}
 +
& \frac{5\sqrt{7}-7\sqrt{5}}{\sqrt{7}-\sqrt{5}}\centerdot \frac{\sqrt{7}+\sqrt{5}}{\sqrt{7}+\sqrt{5}}=\frac{\left( 5\sqrt{7}-7\sqrt{5} \right)\centerdot \left( \sqrt{7}+\sqrt{5} \right)}{\left( \sqrt{7} \right)^{2}-\left( \sqrt{5} \right)^{2}} \\
 +
& =\frac{5\sqrt{7}\centerdot \sqrt{7}+5\sqrt{5}\centerdot \sqrt{7}-7\sqrt{5}\centerdot \sqrt{7}-7\sqrt{5}\centerdot \sqrt{5}}{7-5} \\
 +
& =\frac{5\left( \sqrt{7} \right)^{2}+5\sqrt{5}\sqrt{7}-7\sqrt{5}\sqrt{7}-7\left( \sqrt{5} \right)^{2}}{2} \\
 +
& =\frac{5\centerdot 7+5\sqrt{5}\sqrt{7}-7\sqrt{5}\sqrt{7}-7\centerdot 5}{2} \\
 +
& =\frac{5\sqrt{5}\sqrt{7}-7\sqrt{5}\sqrt{7}}{2}=\frac{\left( 5-7 \right)\sqrt{5}\sqrt{7}}{2}=\frac{-2\sqrt{5}\sqrt{7}}{2} \\
 +
& =-\sqrt{35} \\
 +
\end{align}</math>

Version vom 10:15, 23. Sep. 2008

We multiply the top and bottom of the fraction by the conjugate of the denominator, \displaystyle \sqrt{7}+\sqrt{5} , and see what it leads to:


\displaystyle \begin{align} & \frac{5\sqrt{7}-7\sqrt{5}}{\sqrt{7}-\sqrt{5}}\centerdot \frac{\sqrt{7}+\sqrt{5}}{\sqrt{7}+\sqrt{5}}=\frac{\left( 5\sqrt{7}-7\sqrt{5} \right)\centerdot \left( \sqrt{7}+\sqrt{5} \right)}{\left( \sqrt{7} \right)^{2}-\left( \sqrt{5} \right)^{2}} \\ & =\frac{5\sqrt{7}\centerdot \sqrt{7}+5\sqrt{5}\centerdot \sqrt{7}-7\sqrt{5}\centerdot \sqrt{7}-7\sqrt{5}\centerdot \sqrt{5}}{7-5} \\ & =\frac{5\left( \sqrt{7} \right)^{2}+5\sqrt{5}\sqrt{7}-7\sqrt{5}\sqrt{7}-7\left( \sqrt{5} \right)^{2}}{2} \\ & =\frac{5\centerdot 7+5\sqrt{5}\sqrt{7}-7\sqrt{5}\sqrt{7}-7\centerdot 5}{2} \\ & =\frac{5\sqrt{5}\sqrt{7}-7\sqrt{5}\sqrt{7}}{2}=\frac{\left( 5-7 \right)\sqrt{5}\sqrt{7}}{2}=\frac{-2\sqrt{5}\sqrt{7}}{2} \\ & =-\sqrt{35} \\ \end{align}