Lösung 2.1:3f

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 2.1:3f moved to Solution 2.1:3f: Robot: moved page)
K
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
 
Treating <math>4x</math> as one term, we can write
Treating <math>4x</math> as one term, we can write
-
<math> \qquad 16x^2+8x+1=(4x)^2 +2\cdot 4x +1 </math>
+
{{Displayed math||<math> \qquad 16x^2+8x+1=(4x)^2 +2\cdot 4x +1 </math>}}
and since <math> y^2 +2y+1=(y+1)^2 </math> we obtain
and since <math> y^2 +2y+1=(y+1)^2 </math> we obtain
-
<math> \qquad (4x)^2 +2\cdot 4x +1= (4x+1)^2 </math>
+
{{Displayed math||<math> \qquad (4x)^2 +2\cdot 4x +1= (4x+1)^2 </math>.}}
-
<!--<center> [[Image:2_1_3f.gif]] </center>-->
+
-
{{NAVCONTENT_STOP}}
+

Version vom 08:39, 23. Sep. 2008

Treating \displaystyle 4x as one term, we can write

Vorlage:Displayed math

and since \displaystyle y^2 +2y+1=(y+1)^2 we obtain

Vorlage:Displayed math