Lösung 2.1:2b

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 2.1:2b moved to Solution 2.1:2b: Robot: moved page)
K
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
 
-
<!--center> [[Image:2_1_2b.gif]] </center-->
 
We expand the first product of bracketed terms by multiplying each term inside the first bracket by each term from the second bracket
We expand the first product of bracketed terms by multiplying each term inside the first bracket by each term from the second bracket
-
<math>
+
{{Displayed math||<math>\begin{align}
-
\qquad
+
-
\begin{align}
+
(1-5x)(1+15x) &= 1\cdot 1+1\cdot 15x-5x\cdot 1-5x \cdot 15x\\
(1-5x)(1+15x) &= 1\cdot 1+1\cdot 15x-5x\cdot 1-5x \cdot 15x\\
-
&=1+15x-5x-75x^2
+
&=1+15x-5x-75x^2\\
-
\end{align}
+
&=1+10x-75x^2\,\textrm{.}
-
</math>
+
\end{align}</math>}}
-
As for the second expression, we can use the conjugate rule <math>(a-b)(a+b)=a^2-b^2,</math> where <math>a=2</math> and <math> b=5x.</math>
+
As for the second expression, we can use the conjugate rule <math>(a-b)(a+b)=a^2-b^2,</math> where <math>a=2</math> and <math> b=5x</math>,
-
<math>
+
{{Displayed math||<math>\begin{align}
-
\qquad
+
-
\begin{align}
+
3(2-5x)(2+5x) &= 3\big( 2^2-(5x)^2\big)\\
3(2-5x)(2+5x) &= 3\big( 2^2-(5x)^2\big)\\
&=3(4-25x^2)\\
&=3(4-25x^2)\\
-
&=12-75x^2
+
&=12-75x^2\,\textrm{.}
-
\end{align}
+
\end{align}</math>}}
-
</math>
+
All together, we obtain
All together, we obtain
-
<math> \qquad (1-5x)(1+15x)-3(2-5x)(2+5x) </math>
+
{{Displayed math||<math>\begin{align}
-
 
+
(1-5x)(1+15x)-3(2-5x)(2+5x) &= (1+10x-75x^2)-(12-75x^2)\\
-
<math>
+
-
\qquad
+
-
\begin{align}
+
-
\phantom{3(2-5x)(2+5x)} &= (1+10x-75x^2)-(12-75x^2)\\
+
&= 1+10x-75x^2-12+75x^2\\
&= 1+10x-75x^2-12+75x^2\\
&= 1-12+10x-75x^2+75x^2\\
&= 1-12+10x-75x^2+75x^2\\
-
&=-11+10x
+
&=-11+10x\,\textrm{.}
-
\end{align}
+
\end{align}</math>}}
-
</math>
+
-
 
+
-
{{NAVCONTENT_STOP}}
+

Version vom 08:15, 23. Sep. 2008

We expand the first product of bracketed terms by multiplying each term inside the first bracket by each term from the second bracket

Vorlage:Displayed math

As for the second expression, we can use the conjugate rule \displaystyle (a-b)(a+b)=a^2-b^2, where \displaystyle a=2 and \displaystyle b=5x,

Vorlage:Displayed math

All together, we obtain

Vorlage:Displayed math