Lösung 1.3:6f

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
-
We can factorize the exponents
+
We can factorize the exponents 40 and 56 as
-
<math>40</math>
+
-
and
+
-
<math>56</math>
+
-
as
+
 +
{{Displayed math||<math>\begin{align}
 +
40 &= 4\cdot 10 = 2\cdot 2\cdot 2\cdot 5 = 2^{3}\cdot 5 \\[3pt]
 +
56 &= 7\cdot 8 = 7\cdot 2\cdot 4 = 7\cdot 2\cdot 2\cdot 2 = 2^{3}\cdot 7
 +
\end{align}</math>}}
-
<math>\begin{align}
+
and we then see that they have <math>2^{3} = 8</math> as a common factor. We can take this factor out as an "outer" exponent
-
& 40=4\centerdot 10=2\centerdot 2\centerdot 2\centerdot 5=2^{3}\centerdot 5 \\
+
-
& \\
+
-
& 56=7\centerdot 8=7\centerdot 2\centerdot 4=7\centerdot 2\centerdot 2\centerdot 2=2^{3}\centerdot 7 \\
+
-
\end{align}</math>
+
 +
{{Displayed math||<math>\begin{align}
 +
3^{40} &= 3^{5\cdot 8} = \bigl(3^{5}\bigr)^{8} = (3\cdot 3\cdot 3\cdot 3\cdot 3)^{8} = 243^{8}\,,\\[3pt]
 +
2^{56} &= 2^{7\cdot 8} = \bigl(2^{7}\bigr)^{8} = (2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2)^{8} = 128^{8}\,\textrm{.}
 +
\end{align}</math>}}
-
and we then see that they have
+
This shows that <math>3^{40} = 243^{8}</math> is bigger than <math>2^{56} = 128^{8}</math>.
-
<math>2^{3}=8</math>
+
-
as a common factor. We can take this factor out as an "outer" exponent:
+
-
 
+
-
 
+
-
<math>\begin{align}
+
-
& 3^{40}=3^{5\centerdot 8}=\left( 3^{5} \right)^{8}=\left( 3\centerdot 3\centerdot 3\centerdot 3\centerdot 3 \right)^{8}=243^{8} \\
+
-
& \\
+
-
& 2^{56}=2^{7\centerdot 8}=\left( 2^{7} \right)^{8}=\left( 2\centerdot 2\centerdot 2\centerdot 2\centerdot 2\centerdot 2\centerdot 2 \right)^{8}=128^{8} \\
+
-
\end{align}</math>
+
-
 
+
-
 
+
-
This shows that
+
-
<math>3^{40}=243^{8}</math>
+
-
is bigger than
+
-
<math>2^{56}=128^{8}</math>
+

Version vom 07:33, 23. Sep. 2008

We can factorize the exponents 40 and 56 as

Vorlage:Displayed math

and we then see that they have \displaystyle 2^{3} = 8 as a common factor. We can take this factor out as an "outer" exponent

Vorlage:Displayed math

This shows that \displaystyle 3^{40} = 243^{8} is bigger than \displaystyle 2^{56} = 128^{8}.