Lösung 1.3:6f
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K |
|||
Zeile 1: | Zeile 1: | ||
- | We can factorize the exponents | + | We can factorize the exponents 40 and 56 as |
- | + | ||
- | and | + | |
- | + | ||
- | as | + | |
+ | {{Displayed math||<math>\begin{align} | ||
+ | 40 &= 4\cdot 10 = 2\cdot 2\cdot 2\cdot 5 = 2^{3}\cdot 5 \\[3pt] | ||
+ | 56 &= 7\cdot 8 = 7\cdot 2\cdot 4 = 7\cdot 2\cdot 2\cdot 2 = 2^{3}\cdot 7 | ||
+ | \end{align}</math>}} | ||
- | <math> | + | and we then see that they have <math>2^{3} = 8</math> as a common factor. We can take this factor out as an "outer" exponent |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
+ | {{Displayed math||<math>\begin{align} | ||
+ | 3^{40} &= 3^{5\cdot 8} = \bigl(3^{5}\bigr)^{8} = (3\cdot 3\cdot 3\cdot 3\cdot 3)^{8} = 243^{8}\,,\\[3pt] | ||
+ | 2^{56} &= 2^{7\cdot 8} = \bigl(2^{7}\bigr)^{8} = (2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2)^{8} = 128^{8}\,\textrm{.} | ||
+ | \end{align}</math>}} | ||
- | + | This shows that <math>3^{40} = 243^{8}</math> is bigger than <math>2^{56} = 128^{8}</math>. | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | This shows that | + | |
- | <math>3^{40}=243^{8}</math> | + | |
- | is bigger than | + | |
- | <math>2^{56}=128^{8}</math> | + |
Version vom 07:33, 23. Sep. 2008
We can factorize the exponents 40 and 56 as
and we then see that they have \displaystyle 2^{3} = 8 as a common factor. We can take this factor out as an "outer" exponent
This shows that \displaystyle 3^{40} = 243^{8} is bigger than \displaystyle 2^{56} = 128^{8}.