Lösung 1.3:6e

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
-
Both
+
Both 125 and 625 can be written as powers of 5,
-
<math>125</math>
+
-
and
+
-
<math>625</math>
+
-
can be written as powers of
+
-
<math>5</math>,
+
-
 
+
{{Displayed math||<math>\begin{align}
-
<math>\begin{align}
+
125 &= 5\cdot 5 = 5\cdot 5\cdot 5 = 5^{3},\\[5pt]
-
& 125=5\centerdot 5=5\centerdot 5\centerdot 5=5^{3} \\
+
625 &= 5\cdot 125 = 5\cdot 5^{3} = 5^{4},
-
& \\
+
\end{align}</math>}}
-
& 625=5\centerdot 125=5\centerdot 5^{3}=5^{4} \\
+
-
& \\
+
-
\end{align}</math>
+
and this means that
and this means that
 +
{{Displayed math||<math>\begin{align}
 +
125^{\frac{1}{2}} &= \bigl(5^{3}\bigr)^{\frac{1}{2}} = 5^{3\cdot\frac{1}{2}} = 5^{\frac{3}{2}},\\[5pt]
 +
625 &= \bigl(5^{4}\bigr)^{\frac{1}{3}} = 5^{4\cdot\frac{1}{3}} = 5^{\frac{4}{3}}\,\textrm{.}
 +
\end{align}</math>}}
-
<math>\begin{align}
+
From this, we see that <math>125^{\frac{1}{2}} > 625^{\frac{1}{3}}</math>, since the exponent 3/2 is bigger than 4/3 and the base 5 is bigger than 1.
-
& 125^{\frac{1}{2}}=\left( 5^{3} \right)^{\frac{1}{2}}=5^{3\centerdot \frac{1}{2}}=5^{\frac{3}{2}} \\
+
-
& \\
+
-
& 625=\left( 5^{4} \right)^{\frac{1}{3}}=5^{4\centerdot \frac{1}{3}}=5^{\frac{4}{3}} \\
+
-
\end{align}</math>
+
-
 
+
-
 
+
-
From this, we see that
+
-
<math>125^{\frac{1}{2}}>625^{\frac{1}{3}}</math>, since the exponent
+
-
<math>{3}/{2}\;</math>
+
-
is bigger than
+
-
<math>{4}/{3}\;</math>
+
-
and the base
+
-
<math>5</math>
+
-
is bigger than
+
-
<math>1</math>.
+

Version vom 14:57, 22. Sep. 2008

Both 125 and 625 can be written as powers of 5,

Vorlage:Displayed math

and this means that

Vorlage:Displayed math

From this, we see that \displaystyle 125^{\frac{1}{2}} > 625^{\frac{1}{3}}, since the exponent 3/2 is bigger than 4/3 and the base 5 is bigger than 1.