Lösung 1.3:6d

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
-
One way to compare the two numbers is to rewrite the power
+
One way to compare the two numbers is to rewrite the power <math>\bigl(5^{\frac{1}{3}}\bigr)^{4}</math> so that it has the same exponent as <math>400^{\frac{1}{3}}</math>,
-
<math>\left( 5^{\frac{1}{3}} \right)^{4}</math>
+
-
so that it has the same exponent as
+
-
<math>400^{\frac{1}{3}}</math>,
+
 +
{{Displayed math||<math>\bigl(5^{\frac{1}{3}}\bigr)^{4} = 5^{\frac{1}{3}\cdot 4} = 5^{4\cdot\frac{1}{3}} = \bigl(5^{4}\bigr)^{\frac{1}{3}} = \bigl(5\cdot 5\cdot 5\cdot 5\bigr)^{\frac{1}{3}} = 625^{\frac{1}{3}}\,</math>.}}
-
<math>\left( 5^{\frac{1}{3}} \right)^{4}=5^{\frac{1}{3}\centerdot 4}=5^{4\centerdot \frac{1}{3}}=\left( 5^{4} \right)^{\frac{1}{3}}=\left( 5\centerdot 5\centerdot 5\centerdot 5 \right)^{\frac{1}{3}}=625^{\frac{1}{3}}</math>.
+
Now, we see that <math>\bigl(5^{\frac{1}{3}}\bigr)^{4} > 400^{\frac{1}{3}}</math>, because <math>625 > 400</math> and the exponent 1/3 is positive.
-
 
+
-
Now, we see that
+
-
<math>\left( 5^{\frac{1}{3}} \right)^{4}>400^{\frac{1}{3}}</math>, because
+
-
<math>625>400</math>
+
-
and the exponent
+
-
<math>\frac{1}{3}</math>
+
-
is positive.
+

Version vom 14:52, 22. Sep. 2008

One way to compare the two numbers is to rewrite the power \displaystyle \bigl(5^{\frac{1}{3}}\bigr)^{4} so that it has the same exponent as \displaystyle 400^{\frac{1}{3}},

Vorlage:Displayed math

Now, we see that \displaystyle \bigl(5^{\frac{1}{3}}\bigr)^{4} > 400^{\frac{1}{3}}, because \displaystyle 625 > 400 and the exponent 1/3 is positive.