Lösung 3.1:5c
Aus Online Mathematik Brückenkurs 1
K (Lösning 3.1:5c moved to Solution 3.1:5c: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | The trick is to use the conjugate rule |
- | < | + | <math>\left( a-b \right)(a+b)=a^{\text{2}}-b^{\text{2}}</math> |
- | {{ | + | and multiply the top and bottom of the fraction by |
+ | <math>3-\sqrt{7}</math> | ||
+ | (note the minus sign), since then the new denominator will be | ||
+ | <math>\left( 3+\sqrt{7} \right)\left( 3-\sqrt{7} \right)=3^{2}-\left( \sqrt{7} \right)^{2}=9-7=2</math> | ||
+ | (conjugate rule with | ||
+ | <math>a=\text{3 }</math> | ||
+ | and | ||
+ | <math>b=\sqrt{\text{7}}</math> | ||
+ | ), i.e. the root sign is squared away. | ||
+ | |||
+ | The whole calculation is | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \frac{2}{3+\sqrt{7}}=\frac{2}{3+\sqrt{7}}\centerdot \frac{3-\sqrt{7}}{3-\sqrt{7}}=\frac{2\left( 3-\sqrt{7} \right)}{3^{2}-\left( \sqrt{7} \right)^{2}} \\ | ||
+ | & =\frac{2\centerdot 3-2\sqrt{7}}{2}=3-\sqrt{7} \\ | ||
+ | \end{align}</math> |
Version vom 14:43, 22. Sep. 2008
The trick is to use the conjugate rule \displaystyle \left( a-b \right)(a+b)=a^{\text{2}}-b^{\text{2}} and multiply the top and bottom of the fraction by \displaystyle 3-\sqrt{7} (note the minus sign), since then the new denominator will be \displaystyle \left( 3+\sqrt{7} \right)\left( 3-\sqrt{7} \right)=3^{2}-\left( \sqrt{7} \right)^{2}=9-7=2 (conjugate rule with \displaystyle a=\text{3 } and \displaystyle b=\sqrt{\text{7}} ), i.e. the root sign is squared away.
The whole calculation is
\displaystyle \begin{align}
& \frac{2}{3+\sqrt{7}}=\frac{2}{3+\sqrt{7}}\centerdot \frac{3-\sqrt{7}}{3-\sqrt{7}}=\frac{2\left( 3-\sqrt{7} \right)}{3^{2}-\left( \sqrt{7} \right)^{2}} \\
& =\frac{2\centerdot 3-2\sqrt{7}}{2}=3-\sqrt{7} \\
\end{align}