Lösung 3.1:5c

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 3.1:5c moved to Solution 3.1:5c: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
The trick is to use the conjugate rule
-
<center> [[Image:3_1_5c.gif]] </center>
+
<math>\left( a-b \right)(a+b)=a^{\text{2}}-b^{\text{2}}</math>
-
{{NAVCONTENT_STOP}}
+
and multiply the top and bottom of the fraction by
 +
<math>3-\sqrt{7}</math>
 +
(note the minus sign), since then the new denominator will be
 +
<math>\left( 3+\sqrt{7} \right)\left( 3-\sqrt{7} \right)=3^{2}-\left( \sqrt{7} \right)^{2}=9-7=2</math>
 +
(conjugate rule with
 +
<math>a=\text{3 }</math>
 +
and
 +
<math>b=\sqrt{\text{7}}</math>
 +
), i.e. the root sign is squared away.
 +
 
 +
The whole calculation is
 +
 
 +
 
 +
<math>\begin{align}
 +
& \frac{2}{3+\sqrt{7}}=\frac{2}{3+\sqrt{7}}\centerdot \frac{3-\sqrt{7}}{3-\sqrt{7}}=\frac{2\left( 3-\sqrt{7} \right)}{3^{2}-\left( \sqrt{7} \right)^{2}} \\
 +
& =\frac{2\centerdot 3-2\sqrt{7}}{2}=3-\sqrt{7} \\
 +
\end{align}</math>

Version vom 14:43, 22. Sep. 2008

The trick is to use the conjugate rule \displaystyle \left( a-b \right)(a+b)=a^{\text{2}}-b^{\text{2}} and multiply the top and bottom of the fraction by \displaystyle 3-\sqrt{7} (note the minus sign), since then the new denominator will be \displaystyle \left( 3+\sqrt{7} \right)\left( 3-\sqrt{7} \right)=3^{2}-\left( \sqrt{7} \right)^{2}=9-7=2 (conjugate rule with \displaystyle a=\text{3 } and \displaystyle b=\sqrt{\text{7}} ), i.e. the root sign is squared away.

The whole calculation is


\displaystyle \begin{align} & \frac{2}{3+\sqrt{7}}=\frac{2}{3+\sqrt{7}}\centerdot \frac{3-\sqrt{7}}{3-\sqrt{7}}=\frac{2\left( 3-\sqrt{7} \right)}{3^{2}-\left( \sqrt{7} \right)^{2}} \\ & =\frac{2\centerdot 3-2\sqrt{7}}{2}=3-\sqrt{7} \\ \end{align}