Lösung 1.3:5f
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K |
|||
Zeile 1: | Zeile 1: | ||
- | The whole expression is quite complicated, so it can be useful to simplify the terms | + | The whole expression is quite complicated, so it can be useful to simplify the terms <math>\bigl(125^{\frac{1}{3}}\bigr)^{2}</math> and <math>\bigl(27^{\frac{1}{3}}\bigr)^{-2}</math> first, |
- | <math>\ | + | |
- | and | + | |
- | <math>\ | + | |
- | first | + | |
+ | {{Displayed math||<math>\begin{align} | ||
+ | \bigl(125^{\frac{1}{3}}\bigr)^{2} &= 125^{\frac{1}{3}\cdot 2} = 125^{\frac{2}{3}}\,,\\[5pt] | ||
+ | \bigl(27^{\frac{1}{3}}\bigr)^{-2} &= 27^{\frac{1}{3}\cdot (-2)} = 27^{-\frac{2}{3}}\,\textrm{.}\end{align}</math>}} | ||
- | + | Then, the bases 125, 27 and 9 can be rewritten as | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | Then, the bases | + | |
- | + | ||
- | and | + | |
- | + | ||
- | can be rewritten as | + | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
+ | {{Displayed math||<math>\begin{align} | ||
+ | 125 &= 5\cdot 25 = 5\cdot 5\cdot 5 = 5^{3},\\ | ||
+ | 27 &= 3\cdot 9 = 3\cdot 3\cdot 3 = 3^{3},\\ | ||
+ | 9 &= 3\cdot 3 = 3^{2}\textrm{.} | ||
+ | \end{align}</math>}} | ||
With the help of the power rules, | With the help of the power rules, | ||
- | + | {{Displayed math||<math>\begin{align} | |
- | <math>\begin{align} | + | \bigl(125^{\frac{1}{3}}\bigr)^{2}\cdot\bigl(27^{\frac{1}{3}}\bigr)^{-2}\cdot 9^{\frac{1}{2}} &= 125^{\frac{2}{3}}\cdot 27^{-\frac{2}{3}}\cdot 9^{\frac{1}{2}}\\[5pt] |
- | + | &= \bigl(5^{3}\bigr)^{\frac{2}{3}}\cdot \bigl(3^{3}\bigr)^{-\frac{2}{3}}\cdot \bigl(3^{2}\bigr)^{\frac{1}{2}}\\[5pt] | |
- | + | &= 5^{3\cdot\frac{2}{3}}\cdot 3^{3\cdot (-\frac{2}{3})}\cdot 3^{2\cdot\frac{1}{2}}\\[5pt] | |
- | & =\ | + | &= 5^{2}\cdot 3^{-2}\cdot 3^{1}\\[5pt] |
- | + | &= 5^{2}\cdot 3^{-2+1}\\[5pt] | |
- | & =5^{2}\ | + | &= 5^{2}\cdot 3^{-1}\\[5pt] |
- | & | + | &= 5\cdot 5\cdot \frac{1}{3}\\[5pt] |
- | + | &= \frac{25}{3}\,\textrm{.} | |
- | \end{align}</math> | + | \end{align}</math>}} |
Version vom 14:42, 22. Sep. 2008
The whole expression is quite complicated, so it can be useful to simplify the terms \displaystyle \bigl(125^{\frac{1}{3}}\bigr)^{2} and \displaystyle \bigl(27^{\frac{1}{3}}\bigr)^{-2} first,
Then, the bases 125, 27 and 9 can be rewritten as
With the help of the power rules,