Lösung 3.1:5a
Aus Online Mathematik Brückenkurs 1
K (Lösning 3.1:5a moved to Solution 3.1:5a: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | If we multiply the top and bottom of the fraction by |
- | < | + | <math>\sqrt{12}</math>, the new denominator will be |
- | {{ | + | <math>\sqrt{12}\centerdot \sqrt{12}=12</math> |
+ | and we will get rid of the root sign in the denominator: | ||
+ | |||
+ | |||
+ | <math>\frac{2}{\sqrt{12}}=\frac{2}{\sqrt{12}}\centerdot \frac{\sqrt{12}}{\sqrt{12}}=\frac{2\sqrt{12}}{12}=\frac{2\sqrt{12}}{2\centerdot 6}=\frac{\sqrt{12}}{6}</math> | ||
+ | |||
+ | |||
+ | This expression can be simplified even further if we write | ||
+ | <math>\text{12}=\text{2}\centerdot \text{6}=\text{2}\centerdot \text{2}\centerdot \text{3}=\text{2}^{\text{2}}\centerdot \text{3 }</math> | ||
+ | and take | ||
+ | <math>\text{2}^{\text{2}}</math> | ||
+ | out from under the root, We get | ||
+ | |||
+ | |||
+ | <math>\frac{\sqrt{12}}{6}=\frac{2\sqrt{3}}{6}=\frac{2\sqrt{3}}{2\centerdot 3}=\frac{\sqrt{3}}{3}.</math> |
Version vom 14:28, 22. Sep. 2008
If we multiply the top and bottom of the fraction by \displaystyle \sqrt{12}, the new denominator will be \displaystyle \sqrt{12}\centerdot \sqrt{12}=12 and we will get rid of the root sign in the denominator:
\displaystyle \frac{2}{\sqrt{12}}=\frac{2}{\sqrt{12}}\centerdot \frac{\sqrt{12}}{\sqrt{12}}=\frac{2\sqrt{12}}{12}=\frac{2\sqrt{12}}{2\centerdot 6}=\frac{\sqrt{12}}{6}
This expression can be simplified even further if we write
\displaystyle \text{12}=\text{2}\centerdot \text{6}=\text{2}\centerdot \text{2}\centerdot \text{3}=\text{2}^{\text{2}}\centerdot \text{3 }
and take
\displaystyle \text{2}^{\text{2}}
out from under the root, We get
\displaystyle \frac{\sqrt{12}}{6}=\frac{2\sqrt{3}}{6}=\frac{2\sqrt{3}}{2\centerdot 3}=\frac{\sqrt{3}}{3}.