Lösung 3.1:5a

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 3.1:5a moved to Solution 3.1:5a: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
If we multiply the top and bottom of the fraction by
-
<center> [[Image:3_1_5a.gif]] </center>
+
<math>\sqrt{12}</math>, the new denominator will be
-
{{NAVCONTENT_STOP}}
+
<math>\sqrt{12}\centerdot \sqrt{12}=12</math>
 +
and we will get rid of the root sign in the denominator:
 +
 
 +
 
 +
<math>\frac{2}{\sqrt{12}}=\frac{2}{\sqrt{12}}\centerdot \frac{\sqrt{12}}{\sqrt{12}}=\frac{2\sqrt{12}}{12}=\frac{2\sqrt{12}}{2\centerdot 6}=\frac{\sqrt{12}}{6}</math>
 +
 
 +
 
 +
This expression can be simplified even further if we write
 +
<math>\text{12}=\text{2}\centerdot \text{6}=\text{2}\centerdot \text{2}\centerdot \text{3}=\text{2}^{\text{2}}\centerdot \text{3 }</math>
 +
and take
 +
<math>\text{2}^{\text{2}}</math>
 +
out from under the root, We get
 +
 
 +
 
 +
<math>\frac{\sqrt{12}}{6}=\frac{2\sqrt{3}}{6}=\frac{2\sqrt{3}}{2\centerdot 3}=\frac{\sqrt{3}}{3}.</math>

Version vom 14:28, 22. Sep. 2008

If we multiply the top and bottom of the fraction by \displaystyle \sqrt{12}, the new denominator will be \displaystyle \sqrt{12}\centerdot \sqrt{12}=12 and we will get rid of the root sign in the denominator:


\displaystyle \frac{2}{\sqrt{12}}=\frac{2}{\sqrt{12}}\centerdot \frac{\sqrt{12}}{\sqrt{12}}=\frac{2\sqrt{12}}{12}=\frac{2\sqrt{12}}{2\centerdot 6}=\frac{\sqrt{12}}{6}


This expression can be simplified even further if we write \displaystyle \text{12}=\text{2}\centerdot \text{6}=\text{2}\centerdot \text{2}\centerdot \text{3}=\text{2}^{\text{2}}\centerdot \text{3 } and take \displaystyle \text{2}^{\text{2}} out from under the root, We get


\displaystyle \frac{\sqrt{12}}{6}=\frac{2\sqrt{3}}{6}=\frac{2\sqrt{3}}{2\centerdot 3}=\frac{\sqrt{3}}{3}.